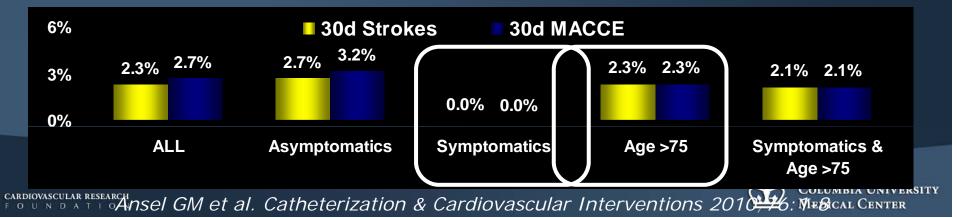

Proximal Protection vs. Distal Protection in CAS

William A. Gray MD Director of Endovascular Services Associate Professor of Clinical Medicine Columbia University Medical Center The Cardiovascular Research Foundation

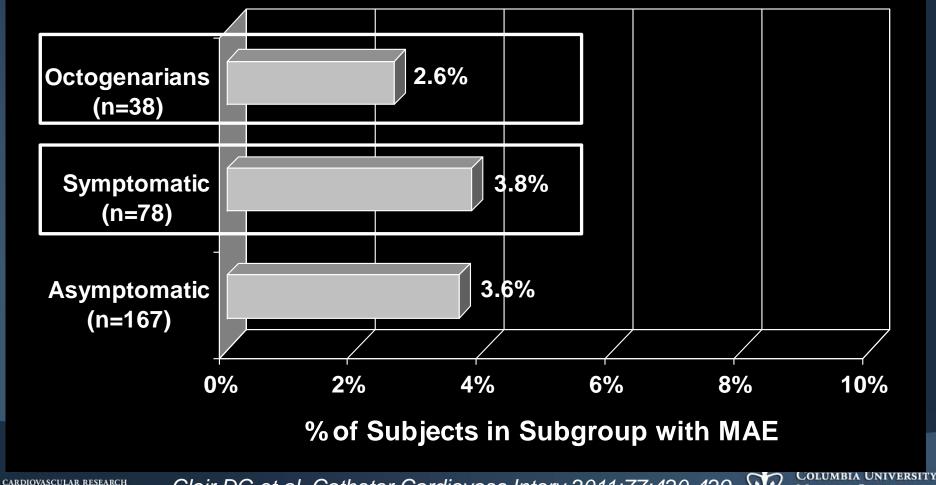
Improvement in CAS outcomes is unrelated to EPD type used

What about outcomes in the at-risk populations?

- Symptomatic
 - Expected 5%-6%
- Octogenarians
 Expected >5%



ARMOUR: Flow-arrest with compelling outcomes in at risk patients: octogenarians and symptomatic patients


30d Results (ITT & Full Population)

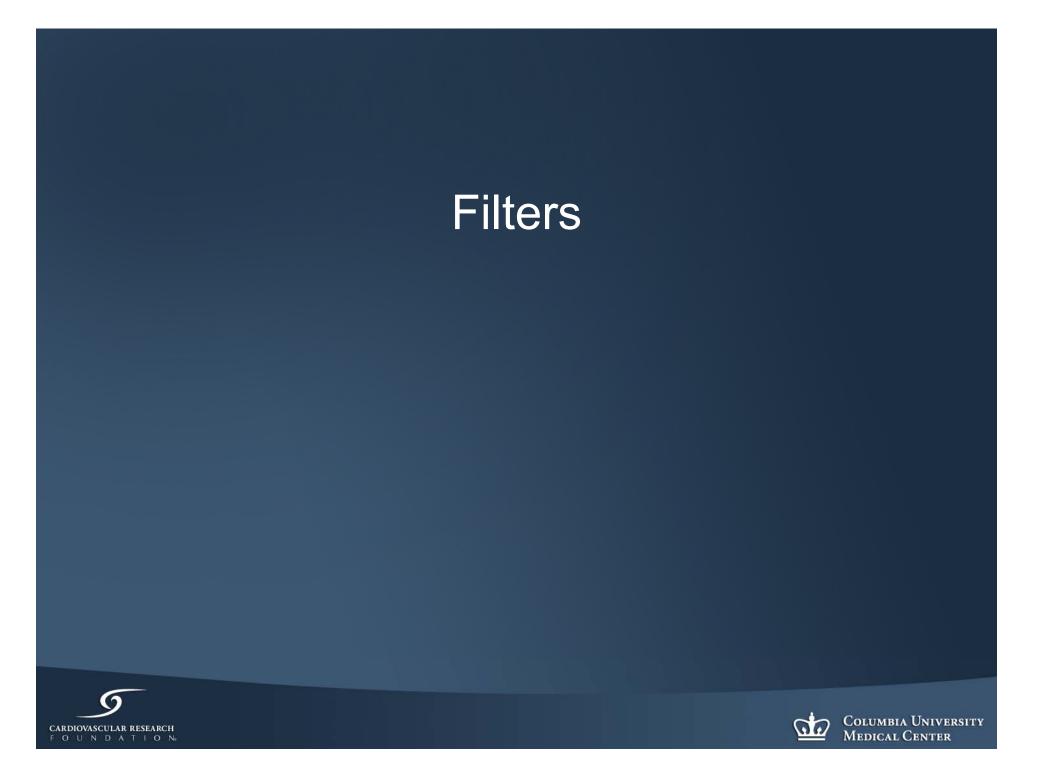
30d Results by Symptoms and Age (ITT)

EMPiRE confirms proximal protection (flow reversal) is safe in at-risk patients: octogenarians & symptomatic patients

OUNDATION

Clair DG et al. Catheter Cardiovasc Interv 2011;77:420-429

N = 245


Medical Center

Embolic Protection:

Impact On Microembolic Burden

ICSS Primary Analysis CEA Vs. CAS in 1713 symptomatic patients

ICSS Substudy: N = 231

New white lesions on DWI:

62 of 124 <u>(50%) transfemoral CAS</u> 18 of 107 <u>(17%) CEA</u> (OR 5.21, 2.78-9.79; <u>*p* < 0.0001</u>)

Lancet Neurol. 2010 Apr;9(4):353-62

ICSS Substudy: N = 231

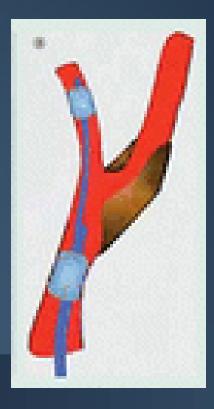
New white lesions on DWI

38 of 56 (68%) transfemoral distal filter CAS

24 OF 68 (35%) unprotected CAS

(OR 3.28, 1.50-7.20; <u>*p* < 0.03</u>)

Lancet Neurol. 2010 Apr; 9(4): 353-62


PROXIMAL PROTECTION: Trans-femoral Flow Arrest (Medtronic MoMa)

Randomized Trials: Filter Protected vs. Proximal Systems

<u>MoMa</u>

Microembolization During Carotid Artery Stenting in Patients With High-Risk, Lipid-Rich Plaque: A Randomized Trial of Proximal Versus Distal Cerebral Protection

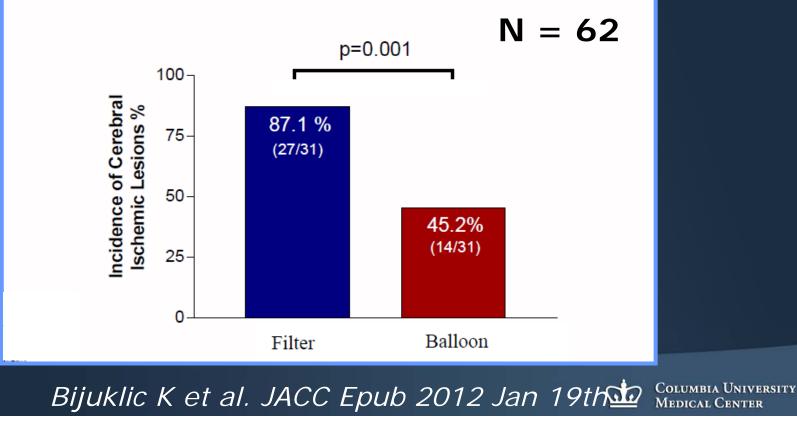
Patients With Detectable MES During the Different Phases of CAS

	FilterWire EZ	MO.MA	
Steps	(n = 27)	(n = 26)	p Value
Lesion wiring	26 (96%)	19 (73%)	0.145
Pre-dilation*	6/7 (86%)	4/10 (40%)	0.578
Stent crossing of the lesion	27 (100%)	7 (27%)	<0.0001
Stent deployment	27 (100%)	7 (27%)	<0.0001
Stent post-dilation	26 (96%)	7 (27%)	<0.0001
Device retrieval/deflation	22 (81%)	25 (96%)	0.721

Montorsi P et al. JACC 2011; 58: 1656-1663 Columbia University Medical Center

MO.MA vs. Filters (DWMRI)

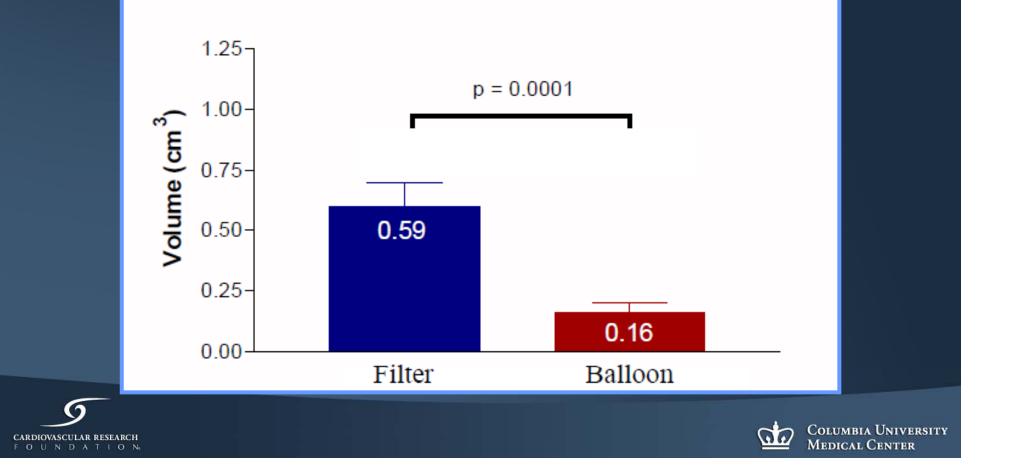
	DWMRI Subgroup			
	MO.MA	Filter		
# new lesions	7	38		
# pts with new lesions	14.2%	42.8%		
Insufficient power		NS		



PROFI: A Prospective, Randomized Trial of Proximal Balloon Occlusion vs. Filter Embolic Protection in Patients Undergoing Carotid Stenting

Incidence of new Cerebral Ischemic Lesions

(Primary Endpoint)



CARDIOVASCULAR RESEARCH

OUNDAT

Mean Volume of new Cerebral Ischemic Lesions

(Secondary Endpoint)

Case Series Data: Filter Protected vs. <u>MoMa</u>

MoMa Vs. Filters (TCD)

CLINICAL RESEARCH

Sc

Interventional Cardiology

Effect of Two Different Neuroprotection Systems on Microembolization During Carotid Artery Stenting

Single center non randomized study of MoMa Vs. Filters to assess microembolization with TCD

	МоМа	Filter
# Patients	21	21
Symptomatic	7 (33%)	6 (29%)
Degree of Stenosis	86±9%	85±8%
Evidence of Macroscopic Debris	18 (89%)	14 (67%)
Stroke & Deaths procedural	0	0
Total MES Counts	57±41	196 ±84
5	p <.0	0.0001
hmidt et al. JACC 2004		Columbia Universi Medical Center

MoMa Vs. Filters (TCD)

Number of Patients (%) with Detectable MES During the Different Phases of CAS

	Filter Group	MO.MA Group	p Value
Sheath placement-protection device placement	21 (100%)	21 (100%)	NS
Wiring of the stenosis	20 (95%)	6 (29%)	< 0.0001
Stent deployment	21 (100%)	11 (52%)	0.0003
Balloon dilation	21 (100%)	15 (71%)	0.008
Retrieval of the protection device	21 (100%)	21 (100%)	NS

Data are mean values \pm SD or n (%).

CAS – carotid artery stenting; MES – microembolic signals; NS – not significant.

Establishment & retrieval of EPD – universally emboligenic

Schmidt et al. JACC 2004

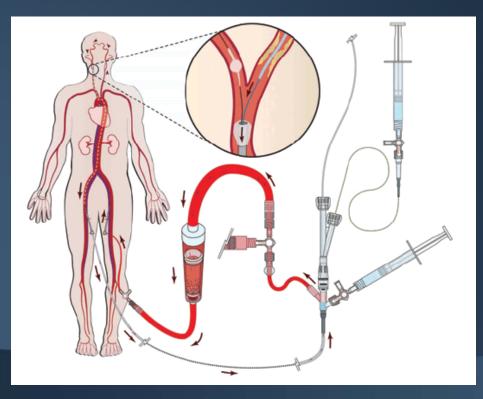
DESERVE: DWI study of Mo.Ma transfemoral proximal protection

DESERVE: <u>N = 127</u>

New white lesions on DWI

38 of 127 (30%)

2.4% MACCE


3 of 127 (2.4%) minor stroke 1 of 127 (0.8%) TIA

P Rubino, EuroPCR 2011

PROXIMAL PROTECTION: Trans-femoral Flow Reversal (Gore Flow Reversal System)

Diffusion-Weighted MR Imaging in Carotid Angioplasty and Stenting with Protection by the Reversed Carotid Arterial Flow

Procedure	Ν	DWI lesion incidence (%)
Diagnostic angiography	26	3/26 (11.5)
CAS with flow reversal	11	2/11 (18.2)

CONCLUSIONS: Protection results obtained with the Parodi system were excellent and comparable with conventional angiography.

Asakura F et al. AJNR 2006;27:753-758

Results: MES on TCD

	Reverse Flow Patients	Filter Protected
Total MES count	192	469 P=0.01
Total MES during deployment of protection device	87	220 P=0.009
Total MES during embologenic stage of CAS – pre and post dilatation and stent insertion	46	169 P=0.004

Goode S et al

PROXIMAL PROTECTION: Transcervical Access with High Flow Rate Flow Reversal (Silk Road Michi NPS)

Reverse Blood Flow

SILK ROAD ME

Michi System FAST-CAS

E SLK

PROOF Safety Results

Parameter	Value (n=65)
Subjects completing 30-day follow up	61 (94%)
Composite of <u>major stroke</u> , <u>myocardial</u> <u>infarction</u> and <u>death</u> from the index procedure through the 30-day post procedural period	0 (0%)
Minor Stroke	1 (1.5%) ¹
Cranial Nerve Injury	1 (1.5%) ²

¹One minor contralateral stroke was reported at 30 days in a patient

who had a negative post-procedural DW-MRI scan

CARDIOVASCULAR RESEARCH F O U N D A T I O N ²Data monitored but not adjudicated.

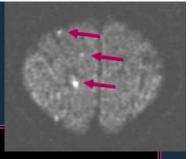
PROOF DWI Sub Study

Baseline scan within 72 hours

Post-procedure scan within 12-48 hours

Submitted to core laboratory for blinded evaluation by two independent neuroradiologists

Parameter


Value (n=48)

Subjects with new DW-MRI lesion(s) 8 (16.7%)

Prospective DW-MRI studies

Comparison of New White Lesion Rate

	Study	Procedure	Embolic Protection	# subjects	% w/ New DWI Lesions
	PROFI ¹	Transfemoral CAS	Distal filter (Emboshield)	31	87%
	ICSS ²	Transfemoral CAS	Distal filter (various)	51	73%
	PROFI ¹	Transfemoral CAS	Proximal occlusion (MoMa)	31	45%
	DESERVE ³	Transfemoral CAS	Proximal occlusion (MoMa)	127	30%
	ICSS ²	CEA	Clamp, backbleed	107	17%
1 J Am Coll Cardiol. 2012;59:1383-1389					
CARDIOVASCULAR RESEARCH 2 Lancet Neurol. 2010 Apr;9(4):353-62 CARDIOVASCULAR RESEARCH 3 P Rubino, 2011 EuroPCR COLUMBIA UNIVERSITY Medical Center					

The clinical relevance of microembolic burden?

Conclusions

- No clinical difference in stroke or death can be identified by EPD type
 - Perhaps in the at-risk populations?
- Proximal EPD are significantly better than filters at controlling the microembolic burden of CAS
 - The clinical relevance of this is unclear, but intuitively makes sense and puts CAS on par with CEA in this regard

Gold standard: CEA Low stroke and death rates but morbid procedure

	Major Unmet	CRE	<u>ST</u>	-
	Needs	CEA	CAS	p
Styloid process Giossopharyngeal nerve (IX)	Myocardial Infarction ¹	2.3%	1.1%	0.03
Hypoglossal nerve (XII) Internal carotid artery Vagus nerve (X)	Cranial Nerve Injury ¹	4.8%	0.3%	<0.0001
External carotid artery Common carotid artery Medical Illustration Copyright © 2009 Nucleus Medical Media, All rights reserved. www.nucleusinc.com	Cranial Nerve Injury unresolved (6 months) ²	2.0%	0.0%	

¹N Engl J Med 2010;363:11-23; ²FDA Panel Meeting, January 25, 2011

Transfemoral CAS Patient friendly but increased peri-procedural stroke risk

	C		
--	---	--	--

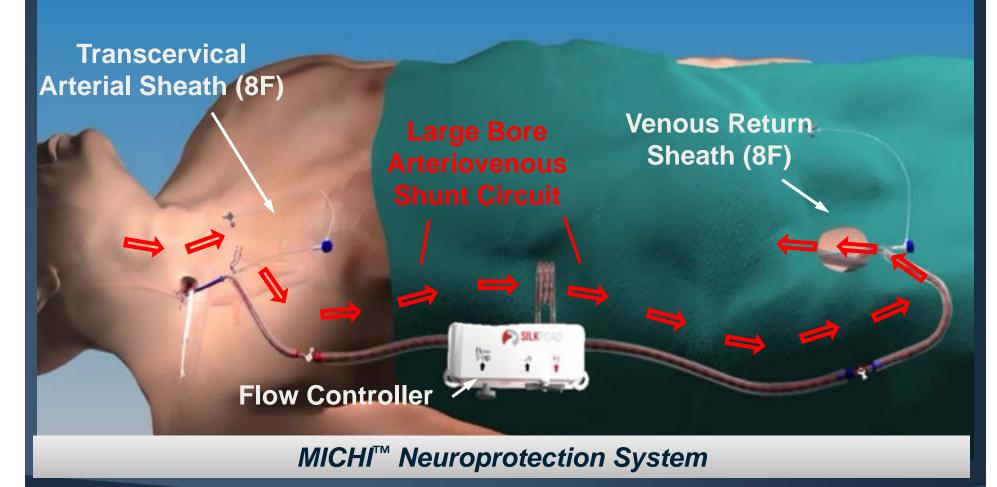
Major Unmet Needs	CEA	CAS	р
CREST Peri-procedural Stroke ¹	2.3%	4.1%	0.01
CREST Peri-procedural Stroke, ≥ 75 years ²	3.1%	6.9%	0.035

¹N Engl J Med 2010;363:11-23; ² Strokes: 2011;42:00-00.

In Favour of Differential Outcomes; Clinical

PROOF: First In Man Michi Neuroprotection System:

<u>Transcervical Access With</u> <u>High Flow Rate Flow Reversal</u>



FAST-CAS

Flow Altered Short Transcervical Carotid Artery Stenting

A Meta-Analysis of Proximal Occlusion Device Outcomes in CAS

All stroke 1.71%

MI 0.02%

Death 0.4%

S/D/MI 2.25%

Bersin RM et al JACC 2012 In Press

Stent Design: In Favour of Differential Outcomes; " Subclinical "

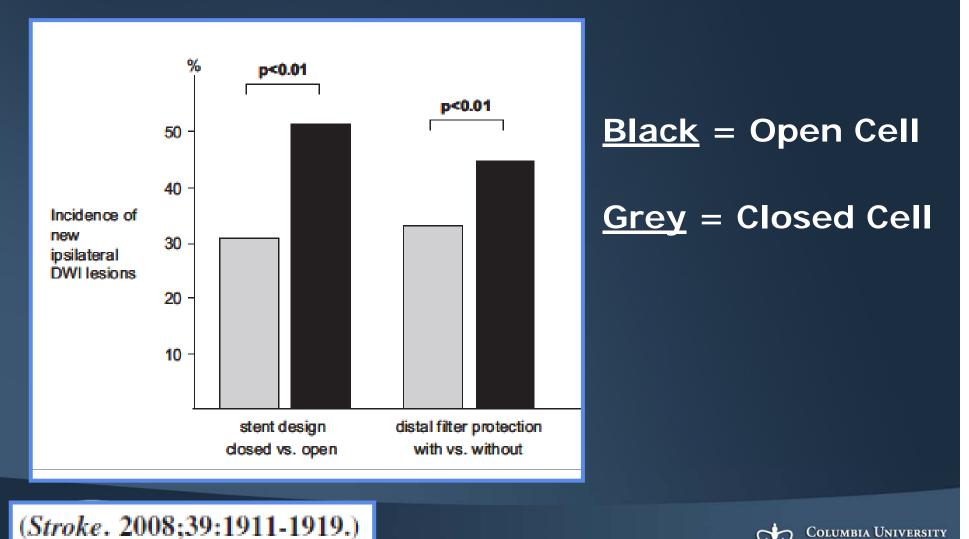
New Brain Lesions After Carotid Stenting Versus Carotid Endarterectomy: A Systematic Review of the Literature

Sonja Schnaudigel, Klaus Gröschel, Sara M. Pilgram and Andreas Kastrup

32 studies: 1363 CAS & 754 CEA

Ipsilateral DWI lesions:

51% open cell stents 31% closed cell stents


p < 0.01

(Stroke. 2008;39:1911-1919.)

New Brain Lesions After Carotid Stenting Versus Carotid Endarterectomy: A Systematic Review of the Literature

Sonja Schnaudigel, Klaus Gröschel, Sara M. Pilgram and Andreas Kastrup

MEDICAL CENTER

Randomized clinical trial of open-cell vs closed-cell stents for carotid stenting and effects of stent design on cerebral embolization

Carlos H. Timaran, MD,^{a,b} Eric B. Rosero, MD,^b Adriana Higuera, MD,^b Adriana Ilarraza, BS,^b J. Gregory Modrall, MD,^{a,b} and G. Patrick Clagett, MD,^b Dallas, Tex

<u>N = 40; 20 XAct, 20 Acculink</u>

Acculink EPD

Primary endpoint subclinical (DWMRI & MES on TCD)

43% symptomatic, 57% asymptomatic

Columbia University Medical Center

MES Endpoint:

	MEDIAN	р	MEDIAN	р
	MES		MES	
	(total)		(post stent <u>i.e. filter</u>	
			<u>retrieval</u>)	
OPEN	264*	0.56	48	0.56
CLOSED	339*		53	

*Filter effects:

Macdonald S, Cerebrovascular diseases, 2010; 29: 282-289

Covered Versus Bare Self-Expanding Stents for Endovascular Treatment of Carotid Artery Stenosis: A Stopped Randomized Trial

14 asymptomatic patients

1:1 RCT ePTFE covered membrane stent (symbiot) vs. Wallstent

Microembolisation (TCD) and DWI

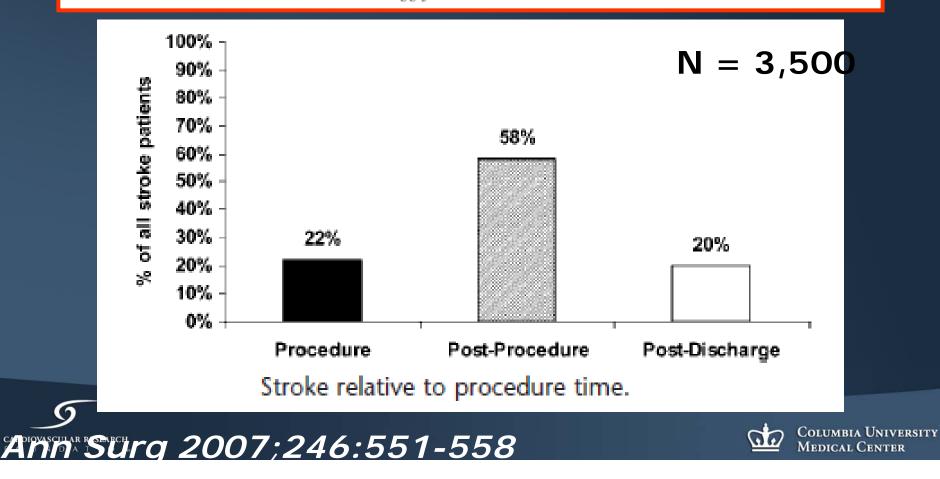
Covered Versus Bare Self-Expanding Stents for Endovascular Treatment of Carotid Artery Stenosis: A Stopped Randomized Trial

Symbiot: median 1 MES / patient (IQR 0-4)

Wallstent: median 6 MES / patient (IQR 3-8)

p = 0.04

Stent Design: In Favour of Differential Outcomes; Clinical



The CAPTURE Registry

Analysis of Strokes Resulting From Carotid Artery Stenting in the Post Approval Setting: Timing, Location, Severity, and Type

Ronald Fairman, MD,* William A. Gray, MD,† Andrea P. Scicli, PhD,‡ Olivia Wilburn, MD, PhD,‡ Patrick Verta, MD,‡ Richard Atkinson, MD,§ Jay S. Yadav, MD,¶ Mark Wholey, MD,∥ L. Nelson Hopkins, MD,** Rod Raabe, MD,†† Stanley Barnwell, MD,‡‡ and Richard Green, MD,§§ for the CAPTURE Trial Collaborators

Phase 1: Catheterisation of arch / great vessels* Phase 2: Lesion crossing / EPD **Phase 3:** Stent deployment / postdilatation* Phase 4: 24 hours post CAS* Phase 5: 30 days post CAS* 30 – day **major stroke** = 10 (4 phase 1, 6 phase 3) *30 – day minor stroke = 18 (Phase 4 & 5)*

" Off – table " strokes may be due to plaque prolapse

" Free Cell Area " & Outcome N = 3,179

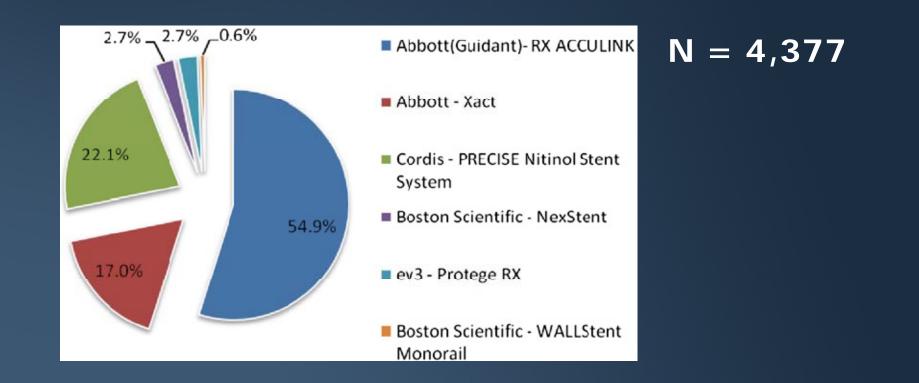

Stent name X-act	Precise Protégé
Nexstent	Acculink
Wallstent	Exponent

Table 5. P-values for the test that event rates differ between stents

Population	Outcome	<i>p</i> -value
Total	All events	0.018
	Post-procedural events	0.002
Symptomatic	All events	0.006
•	Post-procedural events	< 0.0001
Asymptomatic	All events	0.248
	Post-procedural events	0.790

Bosters M e al. Does Free Cell Area Influence the CARDIOVASCULAR RESEARCH COLUMBIA UNIVERSITY MEDICAL CENTER

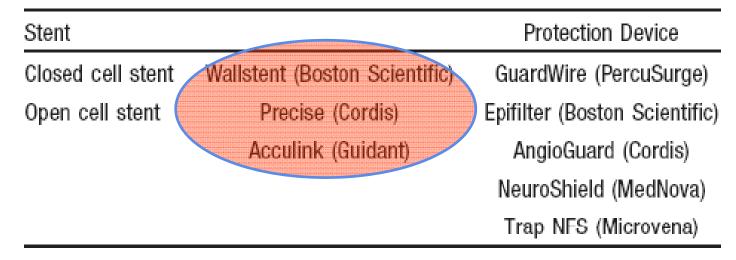
Society for Vascular Surgery Vascular Registry evaluation of stent cell design on carotid artery stenting outcomes

Jim J et al SVS Outcomes Committee. Society for Vase registry evaluation of stent design on carotid antery weblicat Center

Table III. In-hospital outcomes in OPEN versus CLOSED patients

	OPEN (n = 3451)	$\begin{array}{l} CLOSED\\ (n=886) \end{array}$	
In-hospital outcomes	n (%)	n (%)	P value
Death, stroke, or MI	85 (2.46)	28 (3.16)	.2386
Death, stroke, or TIA	111 (3.22)	38 (4.29)	.1213
Mortality	18 (0.52)	8 (0.90)	
Stroke	64 (1.85)	19 (2.14)	.5825
MI	15 (0.43)	5 (0.56)	.5816
TIA	36 (1.04)	14 (1.58)	.2146
TMB	7 (0.20)	3 (0.34)	.4366

CLOSED, Closed cell stent; *MI*, myocardial infarction; *OPEN*, open cell stent; *TIA*, transient ischemic attack; *TMB*, transient monocular blindness. *P* values were based on Fisher exact test. Outcomes are defined as any event intraoperatively or predischarge. Rates are per patient.


Jim J et al SVS Outcomes Committee. Society for Vas registry evaluation of stent design on carotid artery MEDICAL CENTER The *Open Cell* group had (a non-significantly) higher rate of Death / Stroke / MI at 30-days

" Suggesting the benefit of <u>Closed Cell</u> stents in later follow-up "

Jim J et al SVS Outcomes Committee. Society for Vas registry evaluation of stent design on carotid Lantersy MEDICAL CENTER

SPACE: PURELY SYMPTOMATIC POPULATION

Table 1. Interventional Devices (stents; protection devices) Approved for Use Within the SPACE <u>Trial if the Interventionalist</u> Was Certified for the Specific Device

Jansen O et al. Protection or Nonprotection in Carotid Stent E O U N D A T FO N COLUMBIA UNIVERSITY MEDICAL CENTER

SPACE:

(OE <u>30-day</u> ipsilateral / stroke / death)

Table 4. Influence of Different Stent	Types on OE Rate
---------------------------------------	------------------

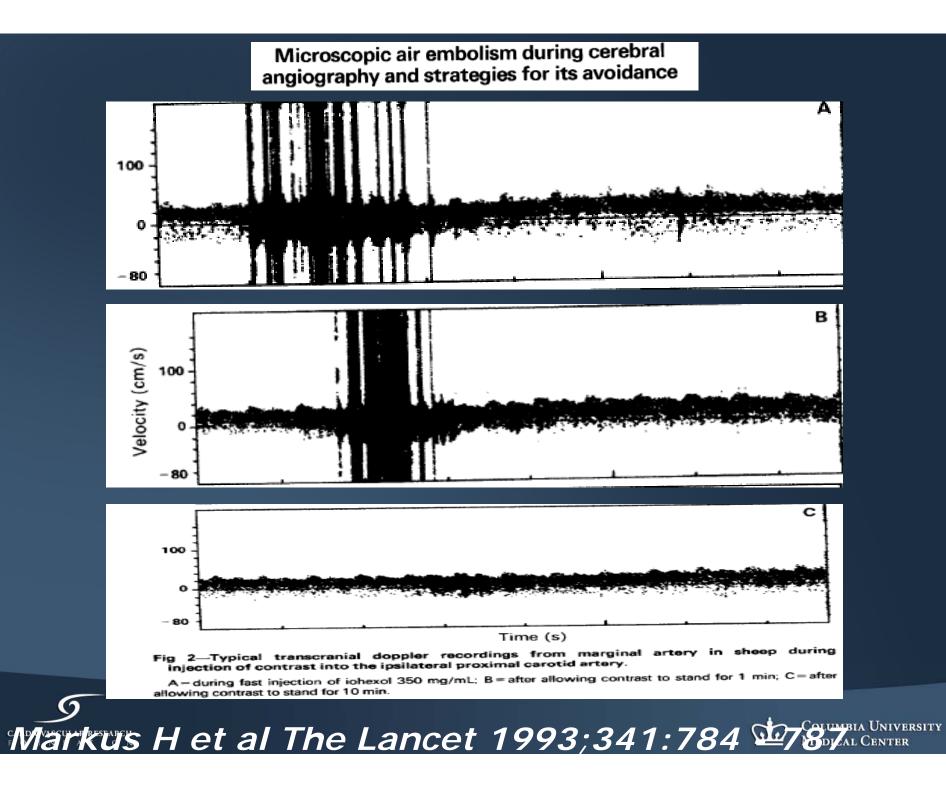
	***************************************	***************************************	
Stent	Wallstent	Acculink	Precise
No. of patients	436	92	35
Pat. with OE	24	9	5
OE rate (95% Cl)	5.5% (3.6–8.1%)	9.8% (4.6–17.8%)	14.3% (4.8–30.3%)
Combined OE rate: 11.0% (6.2-17.8%)			

NB: More pronounced difference without EPD – hinting at the inherent protective properties of

closed-cell stents.

CARDIOVASCULAR RESEARCH

Conclusions:


How Do We Advance CAS Technique Meaningfully?

- Use proximal protection
- Avoid the arch

Consider stent design

