Transcatheter Closure of PMVSD using Amplatzer Asymetric PMVSD Occluder: Our Experience

Bharat Dalvi, MD Glenmark Cardiac Center, Mumbai, India

Background

- Isolated VSD is the commonest CHD
- 80% of all VSDs are perimembranous
- Surgery remains the mainstay of treatment
- Very low mortality
- Why a need for an alternative strategy?

Why is there a need?

- Finite morbidity associated with Sx
 - Patient discomfort
 - Bleeding
 - Residual shunt
 - Aortic regurge

- Thoracotomy scar
- Infection
- AV valve regurge
- CHB
- Neurological sequele of CPB

What makes it challenging?

- Proximity of the defect to
 - the aortic valve
 - the tricuspid valve
 - the bundle of His

Our Experience

- Started in February 2004
- Proctored by Dr Hijazi
- Till date > 90% of closures have been done using AAPMVSDO
- ADO I, ADO II and muscular VSD device have been used in < 10%

Early Lesson Learnt

Patient evaluation and selection is the most important step towards a successful outcome

Patient Evaluation Protocol

- History and Physical examination
 - Repeated LRTI, SOB/fatiguability, failure to thrive, H/O IE
 - -LV apex, MDM at the apex
- ECG: Axis, LV potentials, conduction abnormality
- X-ray: Heart size and plethora
- Comprehensive 2DE/CD

Echo evaluation

- Subcostal, apical and parasternal views
- Size of the defect
- Separation from the aortic valve
- Aortic valve prolapse, AR
- TV aneurysm, TR
- M-mode for LA and LV dimensions
- Spectral Doppler for PAP estimation

Patient Selection

- Children > 12 Kgs
- Symptomatic state
- Hemodynamically significant shunt
 - -Apical MDM
 - -LVIDD Z score of > 2
 - -Qp:Qs > 1.5:1
- Separation from aortic valve > 2 mm
- VSD size < 14 mm

Exclusion Criteria

- Down's syndrome
- With inlet extension
- Irreversible pulmonary vascular disease
- Significant aortic valve prolapse
- LV to RA shunt
- H/O infective endocarditis
- Pre-existing conduction disturbances

Procedure

- Under GA with TEE guidance
- Hemodynamics, oximetry & angiography
- Device size based on TEE diameter
- Preparing the delivery sheath
- Loading the device
- Deployment of device under TEE and angiographic guidance
- Aspirin 5 mg / Kg / day for 6 months

DR. BHARAT DALVI

Patient related variables (n=69)

- Age : 3 24 yrs (10 yrs)
- Weight : 16 56 Kg (28.5 Kg)
- NYHA class I 31, class II 38
- MDM at the apex : 44/69
- CTR > 50% : 35/69
- ECG abnormality : 1 (IRBB)

Patient related variables

- TEE VSD size : 4-11.4 mms (6.5mm)
- Separation from AV : 2-9 mms (3.8 mms)
- Aortic valve prolapse : 10
- Trivial AR in 5; Mild AR in 2
- Presence of TV aneurysm : 27
- Qp:Qs : 1.3 to 2.5 (1.7)

Procedure related variables

- Device diameter: 6-14 mm (8mm)
- Procedure time = 132.4 <u>+</u> 30.4 mins
- Fluorscopy time = 21.6 <u>+</u> 10.7 mins
- Procedural success in 64/69 (92.8%)
- No residual shunt on predischarge echo 54/64 (84%)

Procedural (acute) complications

- Anaphylactic reaction to contrast 1
- Failure to deploy 4
- Silent thromboembolism to left vertebral artery - 1
- Device embolization 1
- Device (LV disk) entrapment in MV apparatus 1
- Hemolysis 1

Procedural (acute) complications

- Predischarge ECG:
 - IRBBB: 3
 - RBBB: 2
 - LAHB: 3
- Predischarge Echo:
 - Neo AR: 1 (trivial)
 - Neo TR: 2 (moderate 1, trivial-1)

Follow up

- Clinical: Symptoms, murmur
- ECG: Conduction abnormalities
- X-ray: Heart size and vascularity
- Echo: LV size on M-mode
 - Device position
 - **Residual shunt**
 - Aortic and tricuspid valves LVOT
 - Thrombus and PE

Follow up

- Follow up: 6 to 90 months
- TR increased in one by two grades : Device surgically removed
- All in NYHA class I
- 7 have a short ESM
- Delayed conduction changes in 2. No CHB
- No device migration, embolization
- Neo TR in 4. Neo AR in 2.
- No thrombus or PE

Baseline

24 hrs later

6 weeks FU

48 hours after

6 weeks later

Why no CHB in our series

- Age
- Down's syndrome were excluded
- Those with inlet extension not included
- VSD size measured at the point of exit
- Device chosen was 1 mm > than the minimum jet diameter
- LUCK

Before

1 year after

Study	Bass et al	Thanopou los et al	Pedra et al	Miro et al	Fu et al
Year	2003	2003	2004	2005	2006
No. of patients	27	10	10	54	35
Age in yrs	1.25 - 32	1.5 - 12	6 - 32	0.5 - 61	1.2 - 54.4
Weight	8.5-80 kg	11-49 kg	19-80 kg	6-77 kg	8-110 kg
Qp:Qs	1.6	1.93±0.2 9	1.5-5.5(2)	1.7±0.6	(1.8)
Device size (mm)	4-12	4-8	8-18	6-18	6-16
Successful implant	93%	100%	100%	94%	91%

Study	Bass et al	Thanopou los et al	Pedra et al	Miro et al	Fu et al
Residual shunt	8%	0%	10%	17%	4%
СНВ	0	0	0	3+2	1
AR	2	0	0	1	12%
LBBB/RB BB	1	3 TLBBB	1	NR	NR
Hemolysis	0	0	0	2	2
Others	1	0	LVOTO-2	0	2

Conclusions

- AAPMVSDO continues to remain a good alternative to surgery in a select group
- Patient selection is at the heart of a successful program
- CHB is a major concern
- Better patient selection
- Avoiding oversizing
- Improvement in device design

Discarding this microengineering marvel altogether – "Height of skepticism"