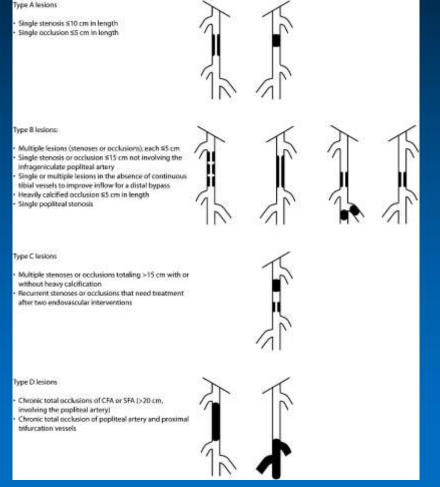
Best Interventional Therapies for TASC C/D Lesions in the Femoral-Popliteal Arteries

Robert M. Bersin, MD, MPH

Medical Director, Endovascular Services Swedish Medical Center Seattle, Washington


Best Interventional Therapies for TASC C/D Lesions in the Femoral-Popliteal Arteries

Faculty Disclosure Robert M. Bersin MD, MPH, FACC, FSCAI

Abbott Vascular C, P, SB Ablative Solutions El Boston Scientific AB, C, EI, P, SB Cook Medical, Inc. C, P Cordis Endovascular C, El Covidien, Inc. C, P Medtronic Vascular C, P Omeros Corp, El QT Vascular, El Sapheon, Inc. El St. Jude Medical C Transverse Medical AB, EI, SO Vatrix Medical El W.L. Gore C, P

AB: Advisory Board C: Consulting Relationship EI: Equity Interest GS: Grant Support P: Proctor or Training Course Sponsorships SB: Speakers Bureau SE: Spouse Employee SO: Stock Options or Positions

TASC II Recommendations for Infrainguinal Interventions and Surgery

TASC C: >15 cm lesion or restenosis TASC D: >20 cm CTO

Recommendation 37 Treatment of femoral popliteal lesions

- TASC A and D lesions: Endovascular therapy is the treatment of choice for type A lesions and surgery is the treatment of choice for type D lesions [C].
- TASC B and C lesions: Endovascular treatment is the preferred treatment for type B lesions and surgery is the preferred treatment for good-risk patients with type C lesions. The patient's co-morbidities, fully informed patient preference and the local operator's long-term success rates must be considered when making treatment recommendations for type B and type C lesions [C].

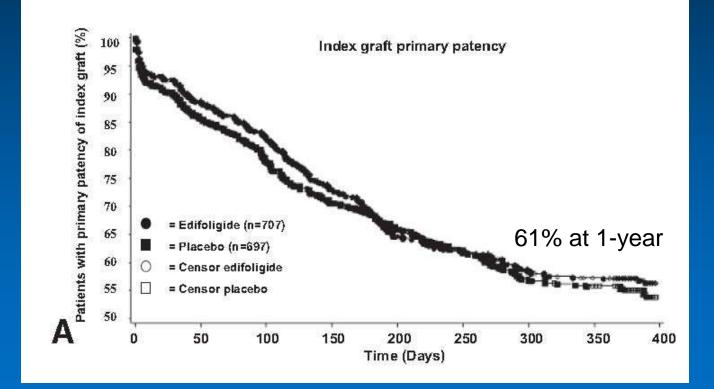
Norgren, L et al TASC II J Vasc Surg 2007; 45 (1) Supplement S: 5A-67A

Pooled Analysis of Infrainguinal Interventions and Surgery

"Vein has better long-term patency than prosthetic in the infra inguinal region (Table F7)."

Table F7b. Randomized trials of types of conduits ^{206–209}			
Above-knee femoral popliteal bypass	5-year patency		
Vein	74–76%		
PTFE	39-52%		
PTFE - polytetrafluoroethylene graft.			

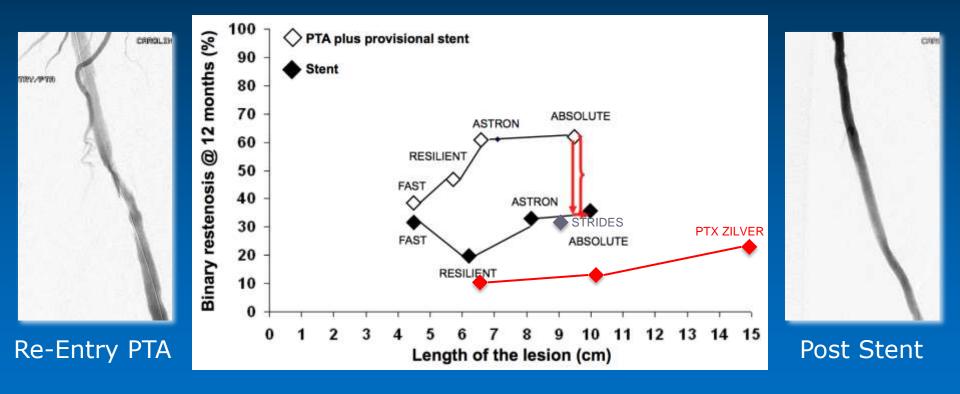
206. Green R et al. Prosthetic above-knee femoropopliteal bypass grafting: five-year results of a randomized trial. J Vasc Surg 2000; 31: 417-25.


207. AbuRahma AF, et al Prospective controlled study of PTFE versus saphenous vein in claudicant patients with bilateral above knee femoropopliteal bypasses. Surgery 1999; 126(4): 594-601. 208. Johnson WC, Lee KK. A comparative evaluation of PTFE, umbilical vein, and saphenous vein bypass grafts for femoral-popliteal above-knee revascularization: a prospective randomized VA cooperative study. J Vasc Surg 2000; 32(2): 268-77.

209. Klinkert P, et al Polytetrafluoroethylene femorotibial bypass grafting: 5-year patency and limb salvage. Ann Vasc Surg 2003; 17(5): 486-91.

Norgren, L et al TASC II J Vasc Surg 2007; 45 (1) Supplement S: 5A-67A

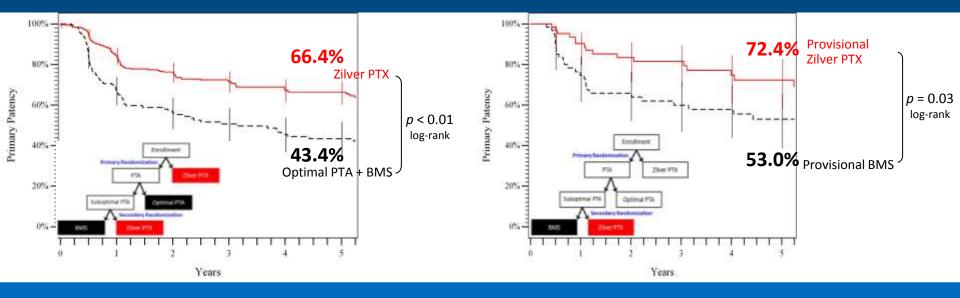
PREVENT III Trial


Autologous vein bypass graft primary patency at 1-year (N=1,404) (PSVR < 3.0 or PSV < 300 cm/sec)

Re-intervention rate 33.4%

Conte MS et al J Vasc Surg 2006; 43: 742-751

Restenosis with Infrainguinal Nitinol Stents



PTX Zilver 5-Year Primary Patency

Primary Randomization

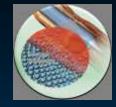
Provisional Stenting PTX vs. BMS

PSVR < 2.0

Dake MD VIVA 2014

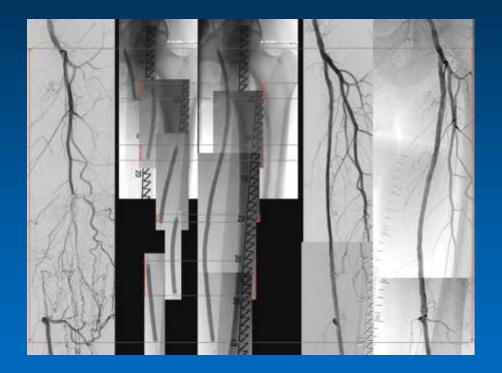
BMS and DES in TASC C/D Lesions

	Zilver PTX RCT ¹	Zilver PTX SAS ²	Zilver PTX SAS LL ³	Zilver PTX Longer Lesions	Durability 200 ⁴
Patients	236	787	134	45	100
Lesions	247	900	135	45	100
Lesion length (mm)	66 ± 39	100 ± 82	226 ± 44	189 ± 91	242
Diameter stenosis (%) ^a	80 ± 17%	85 ± 16%	97 ± 9%	95 ± 11%	N/A
Total occlusions	30%	38%	84%	82.2%	N/A
1-year Primary Patency	82.7% (PSVR < 2.0)	86.2% (PSVR < 2.5)	77.6% (PSVR < 2.5)	86.1% (PSVR < 2.0)	64.8% (PSVR < 2.4)
1-year Freedom from TLR	90.8%	89.3%	85.4%	86.1%	68.2%
1-year Fracture Rate	0.9%	1.5%	2.1%	0.0%	6.0%

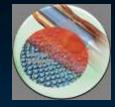

^a Angiographic core lab assessment for RCT and longer lesions Zilver PTX

1. Dake MD, et al. Circ Cardiovasc Interv. 2011;4:495-504.

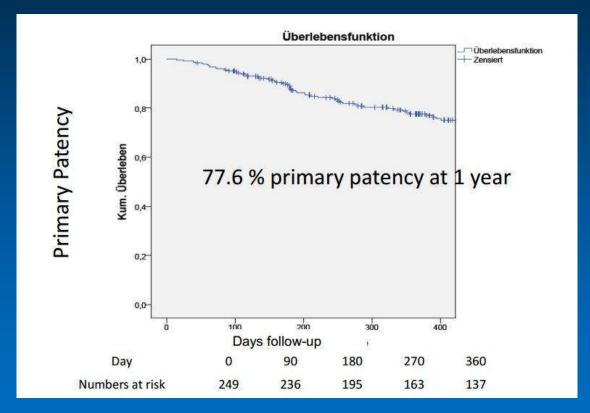
2. Dake MD, et al. J Endovasc Ther. 2011;18:613-23.


3. Bosiers M, et al. J Cardiovasc Surg (Torino). 2013;54:115-22.

4. Bosiers M, et al. JVS. 2011;54-1042-1050.


DCB in TASC C/D Lesions

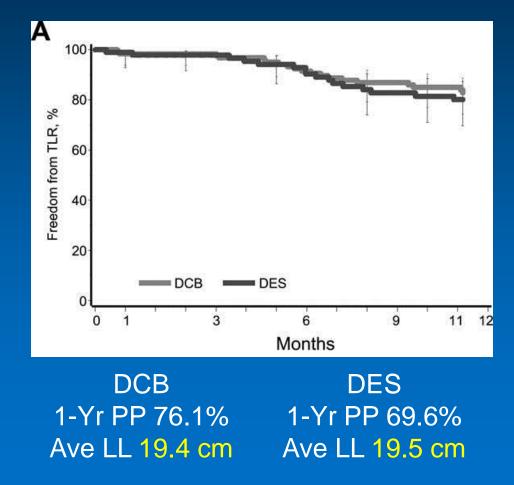
IN.PACT Admiral DCB Global Registry


Pre DEB Post 6-mo 1-year TLR rate for lesions >15 cm 11.5% (N=191)

Ansel G ACC 2015

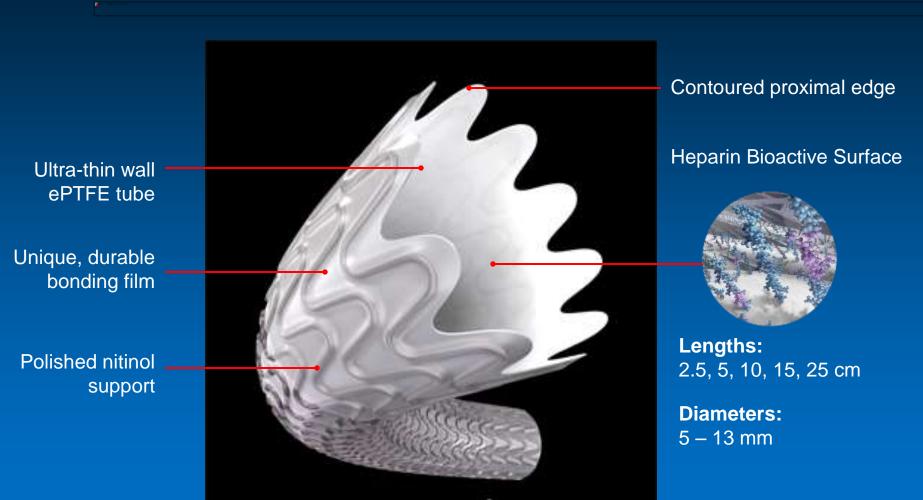
DCB in TASC C/D Lesions

Leipzig Long Lesion DCB Registry (N=249)

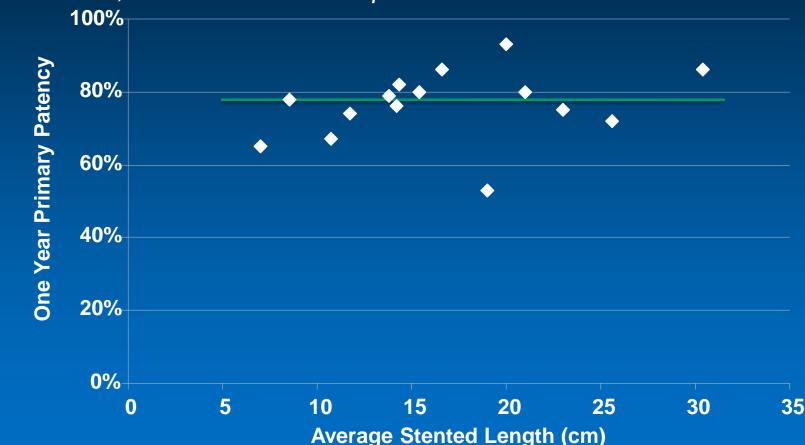


DCB plus bailout BMS 1-year PP 77.6% Ave LL 20.0 cm

Schmidt A LINC 2013


DCB vs. DES in TASC C/D Lesions

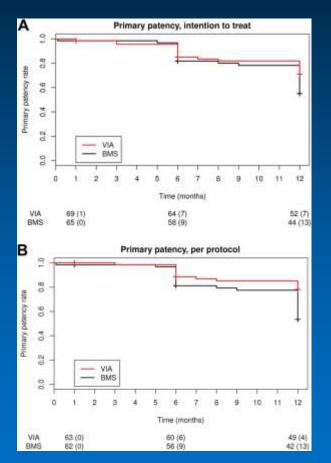
Retrospective 2-center study with propensity score stratification (N=228)


Zeller T et al J Endovasc Ther 2014; 21: 359–368

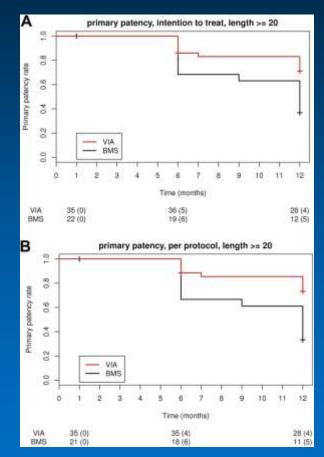
Gore Viabahn Description

@ 2009 W. L. Gore & Associates, Inc.

GORE[®] VIABAHN[®] Device One Year Primary Patency in the SFA Based on Lesion Length

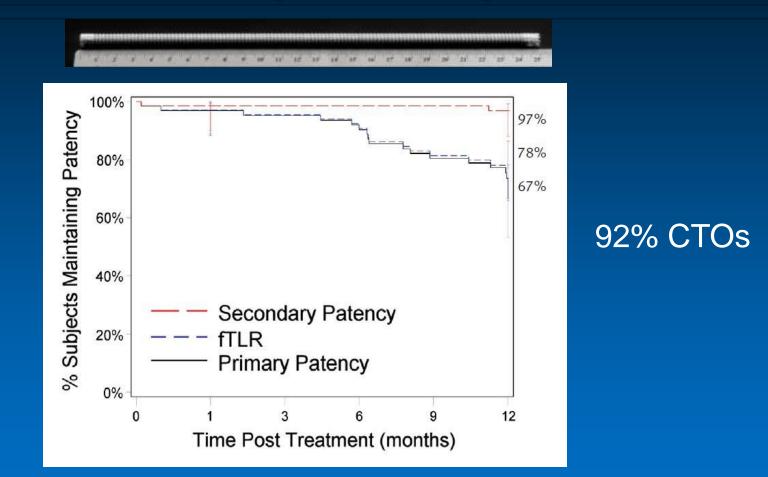


More than 1,100 Limbs in 17 Independent Studies*


* Patient demographics, lesion characterization, and patency definitions may differ among studies. Studies include at least 30 limbs. Coats, et al., and Rabellino, et al., did not report lesion length

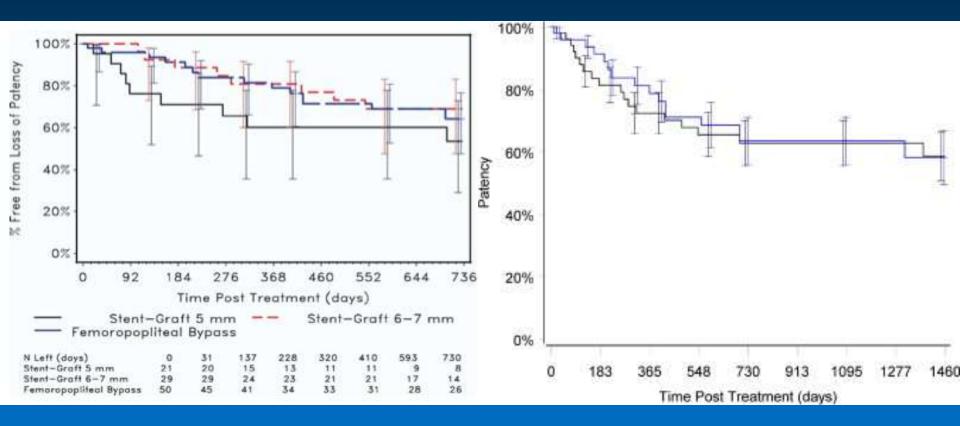
VIASTAR Randomized Trial

All lesions


Lesions \geq 20 cm

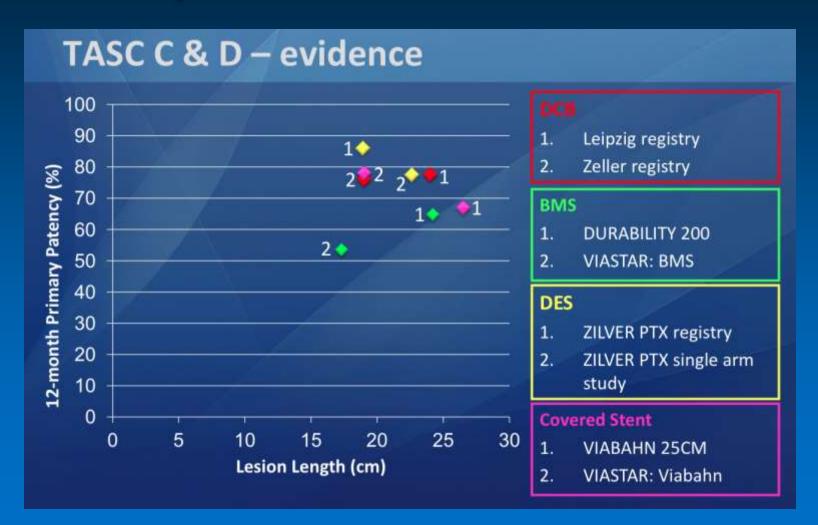
1-year PP 78.1% Ave LL 19.0 cm

Lammer J et al *J Am Coll Cardiol* 2013; 62(15): 1320-1327


TASC D 25cm Viabahn Study 12-month Primary Patency and fTLR

1-year PP 67% Ave LL 26.5 cm

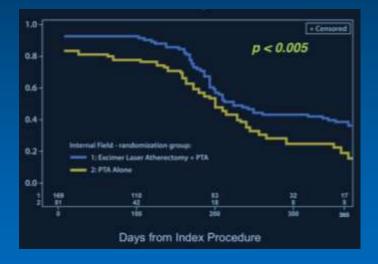
Zeller T LINC 2014


Endografts vs. Prosthetic Fem-Pop Bypass Graft Surgery

Ave lesion length 25.6 cm

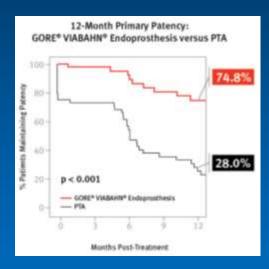
McQuade K et al *J Vasc Surg* 2009; 49: 109-116 McQuade K et J Vasc Surg 2010; 52: 584-591

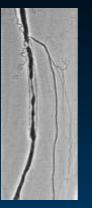
Primary Patency of Interventional Therapies in TASC C/D Lesions



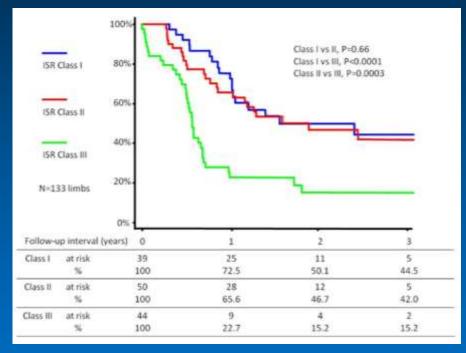
Deloose K MEET 2014

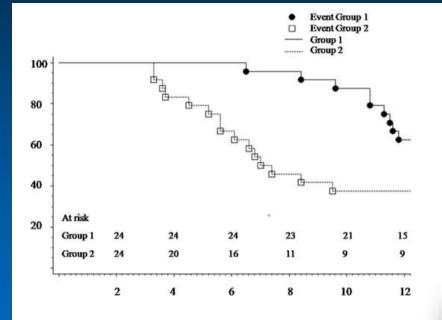
TASC II C ISR Lesions Randomized Trials


Laser



DCB


Viabahn



EXCITE ISR Trial 1-yr PP 40.0% Ave LL 19.6 cm FAIR Trial 1-yr PP 70.5% Ave LL 8.2 cm RELINE Trial 1-yr PP 74.8% Ave LL 17.3 cm

TASC II C Stent Occlusions

PTA Alone Class III 1-Yr PP 15.2% Ave LL 19.8 cm DCB Alone 1-Yr PP 37.5% Ave LL 21.2 cm

Laser plus DCB 1-Yr PP 66.7% Ave LL 20.0 cm

Tosaka A et al J Am Coll Cardiol 2012; 59(1): 16-23 Pampana E LINC 2014

Conclusions

- The 1-year primary patency of autologous vein bypass grafts is only 50-60% when studied in rigorously controlled, prospective clinical trials.
- Intervention is preferred today for TASC II type C lesions >15 cm given the superior outcomes with drug eluting stents, DCBs and endografts.
- The results of intervention appear to be equivalent to surgery for TASC II type D lesions (≥20 cm occlusions and of the distal popliteal trifurcation), even when autologous vein is used.
- The data would support the use of endografts for TASC II type C ISR lesions, but whether DCBs are as good needs further study as only short ISR lesions have been shown to have good outcomes in DCB ISR trials.
- Laser atherectomy improves the results of PTA in the treatment of TASC II type C ISR lesions, and may also improve the results of DCBs and the Viabahn in ISR lesions, but this requires further study.