FRACTIONAL FLOW RESERVE: FROM INVESTIGATIONAL TOOL TO STANDARD OF CARE

TCT ASIA Seoul, Korea, april 26 th, 2012

Nico H. J. Pijls, MD, PhD Catharina Hospital, Eindhoven, The Netherlands

FRACTIONAL FLOW RESERVE 1996-2012: *From Investigational Tool to Standard of Care*

- from intermediate stenosis \rightarrow complex disease
- from simple diagnostic tool \rightarrow improved outcome
- from adjunctive therapy → booster of PCI

FRACTIONAL FLOW RESERVE 1996-2012:

- from intermediate stenosis → complex disease
- from simple diagnostic tool \rightarrow improved outcome
- from adjunctive therapy → booster of PCI

1996: young patient with atypical chest pain and negative exercise / MIBISpect

NEJM 1996

1996: FFR 0.86 \rightarrow no intervention; asa + statin 2012: excellent condition, no complaints

4 of the 6 lesions were significant by FFR and stented

2012:

FFR used to solve many complex diagnostic situations

71-year old lady with acute chest pain, positive troponin, and transient ECG-changes \rightarrow Angiogram : 50% LAD/D1 lesion and 70% CX lesion

LAD 57% stenosis 1.4 mm MLD LCX: 71% stenosis 1.2 mm MLD

- acute chest pain
- ECG changes
- positive troponin

But.....only 2 intermediate lesions not fitting the ECG

measuring FFR prevented inappropriate stenting but warranted further exam....!!!

V-P scan: pathognomonic for pulmonary embolism

Also the opposite happens.....!!!

resting

middle-aged male, typical chestpain at exercise, positive stress test and MIBI.....

.....but (almost) normal coronary angiogram

pressure measurement after stenting

stress

resting

11 weeks after stent in LAD

FFR & left main stenosis; 5-y f.u.

136 patients with interm. left main deferred (FFR ≥ 0.80) have the same 5 year survival and mace rate as the revascularized group! (annual mortality < 2%)

Hamilos M. et al, *Circulation* 2009

FFR has been validated in almost all clinical and Angiographic conditions:

- multivessel disease
- left main and ostial stenosis
- diffuse disease
- bifurcation lesions
- tandem lesions
- unstable angina, NSTEMI
- previous myocardial infarction
- etc....
-but not to be used in acute STEMI

FRACTIONAL FLOW RESERVE 1996-2012:

- from intermediate stenosis \rightarrow complex disease
- from simple diagnostic tool → improved outcome
- from adjunctive therapy \rightarrow booster of PCI

→ DEFER , FAME, FAME -2

MEASURING FFR IMPROVES OUTCOME !

→ DEFER, FAME, FAME -2

Cardiac Death And Acute MI After 5 Years

non-ischemic stenosis, R/x
 non-ischemic stenosis, R/x + stent
 ischemic stenosis, R/x + stent

JACC, 2008

Cardiac Death And Acute MI After 5 Years

non-ischemic stenosis, R/x
 non-ischemic stenosis, R/x + stent
 ischemic stenosis, R/x + stent

DEFER STUDY(1):

Functionally non-significant stenosis has excellent outcome with medical treatment

Stenting a functionally non-significant (FFR-negative) stenosis does NOT make any sense.

It is unnecessary, expensive, and increases the risk of death and MI without any symptomatic benefit

<u>FUNCTIONALLY</u> <u>SIGNIFICANT</u> STENOSIS: CAN WE IMPROVE OUTCOME BY PCI ?

a functionally significant stenosis generally gives symptoms (angina) ("ischemic" stenosis, hemodynamically significant stenosis)

PCI and stenting is extremely effective in relieving symptoms (angina) in such patients

(and much more effective than medical treatment)

DEFER, COURAGE, SYNTAX, FAME

DEFER-study, JACC 2007; 49 : 2105-2111

freedom from chest pain

FUNCTIONAL CLASS in COURAGE - SYNTAX – 3VD and FAME

Does stenting "on good indication" (i.e. ischemic stenosis) improve outcome ?

FAME STUDY

HYPOTHESIS:

 FFR-guided PCI in MVD is better than angio-guided PCI

FAME

FFR –guided PCI:

- improves outcome
- improves quality of live
- is cost-saving
- reduces radiation and contrast exposure
- does not prolong time of procedure

IS FFR GUIDED PCI SUPERIOR TO MEDICAL TREATMENT ?

<u>COURAGE:</u> Medical Treatment is equivalent to angio-guided PCI

<u>FAME:</u> FFR guided PCI is superior to Angio-guided PCI

<u>FAME-2 Study:</u> Is FFR-guided PCI superior to Medical treatment?

FAME 2 Trial Flow Chart

FAME 2 Trial Primary End-Points

The primary end-point of the FAME 2 trial is the 24-month major adverse cardiac event rate defined as:

- All cause death
- Myocardial infarction
- Unplanned hospitalisation leading to urgent revascularisation

as adjudicated by the Clinical Event Committee (CEC)

On recommendation of the independent Data and Safety Monitoring Board enrollment was halted on January 15, 2012 due to a significantly increased patient risk of major adverse cardiac events (MACE) among patients randomized to OMT alone compared to patients randomized to OMT plus FFR-guided PCI

Timeline of results of FAME-2:

- PCR may 2012 Paris: preliminary results of cohort A
- ESC aug 2012 Munich: late-breaking trial
- publication of the study : september 2012
- TCT oct 2012 Miami: large perspective of study

FRACTIONAL FLOW RESERVE 1996-2012:

- from intermediate stenosis \rightarrow complex disease
- from simple diagnostic tool \rightarrow improved outcome
- from adjunctive therapy → booster of PCI

TREATMENT OPTIONS FOR MVD

- Quality and outcome of PCI is significantly improved by FFR guidance (FAME studies)
- Therefore, it might be expected that indications for PCI as treatment of MVD, will grow into 2 directions

GUIDELINES ESC SEPTEMBER 2010

FFR UPGRADED TO LEVEL I A INDICATION

10 – Procedural aspects of PCI

 Table 28: Specific PCI devices and pharmacotherapy

	Class	Level
FFR-guided PCI is recommended for detection of ischemia-related lesion(s) when objective evidence of vessel-related ischamia is not	Ι	A
available		
DES* are recommended for reduction of restenosis/reocclusion, if no contraindication to extended DAPT	Ι	Α
Distal embolic protection is recommended during PCI of SVG disease to avoid distal embolisation of debris and prevent MI	I	В
Rotablation is recommended for preparation of heavily calcified or severely fibrotic lesions that cannot be crossed by a balloon or adequately dilated before planned stenting	-1	С

ESC-EACTS Guidlines for Myocardial Revascularisation, August 30, 2010

Correlation between iFR and FFR (N=206)

all data: $R^2 = 0.70$ diagn accuracy = 67 % FFR range 0.6-0.9: R² = 0.33 diagn accuracy = 58 %

(diagnostic accuracy of flipping a coin = 50 %)

profound influence of hyperemia on iFR:

"iFRhyp" was already called diastolic FFR by Abe et al in Circulation, 1996)

estimated decrease of resistance during "wave-free period"

(1.0 - 0.64)(1.0 - 0.82)

REST

HYPEREMIA

iFR = Pd / Pa at rest during WFP (Sen et al) Claimed to be independent of hyperemia

minimal myocardial resistance during the so-called "wave-free period" is ~ 250 % higher than average myocardial resistance at maximum hyperemia in all dogs

After stenting (endeavour 12 x 3.0 mm)

FAME study: DESIGN

Randomized multicenter study in 1005 patients undergoing DES-stenting for multivessel disease in 20 US and European centers

- independent core-lab
- independent data analysis
- blinded adverse event committee

<u>Multivessel disease:</u> Stenoses of > 50% in at least 2 of the 3 <u>major</u> coronary arteries

An FFR-guided strategy to multivessel PCI is one of those rare situations in medicine in which a new innovative treatment not only improves outcome but is also cost-saving

Fearon et al, Circulation 2010

FAME-2: primary endpoints & ethical considerations

- primary endpoint is *death and infarction* at 24 month
- is it ethical to expose patients with proven ischemia to medical treatment (OMT) alone?
- substitute for death/infarction is unstable angina with emergency PCI
- achieved by unique telephonic alert system ("FAME-telephone")

BIFURCATIONS

TANDEM LESIONS

FFR: The Pressure Pull-back Curve

Pressure pull-back curve at maximum hyperemia:

- place sensor in distal coronary artery
- induce sustained maximum hyperemia by i.v. adenosine, or i.c. papaverine
- pull back the sensor slowly under fluoroscopy
- the individual contribution of every segment and spot to the extent of disease can be studied in this way

Coronary pressure is unique in this respect and such detailed spatial information cannot be obtained by any other invasive or non-invasive method

FAME study: HYPOTHESIS

FFR – guided Percutaneous Coronary Intervention (PCI) in multivessel disease, is superior to current angiography – guided PCI

DEFER STUDY(2):

Worst Outcome With Functionally *Significant* Stenosis

Cardiac Death And Acute MI After 5 Years
 non-ischemic stenosis, R/x
 non-ischemic stenosis, R/x + stent
 ischemic stenosis, R/x + stent

