

CTO-PCI: Antegrade Wire Escalation - Expert's Secret

Antegrade Wire Escalation

Satoru Otsuji, M.D. Higashi Takarazuka Satoh Hospital Hyogo, Japan

Background

• Antegrade Wire Escalation (AWE) is the basis of CTO-PCI.

• AWE is the essential in any method of CTO recanalisation.

Procedural Issues in CTO-PCI

- Thorough Reading Angiogram
- Visualization of collateral
- Guiding Catheter Selection
- Wire Selection and Handling
- Techniques for getting Backup Force
- Preparation: Dilatation, Stenting, Debulking

Maeremans, J. et al. J Am Coll Cardiol. 2016;68(18):1058-70

AWE

The **MORE** complex the CTO, The **LESS** effective AWE will be.

The MORE effective AWE, The HIGHER Success Rate

Wilson et al. Heart 2016

How to achieve successful AWE

STEP 1 Penetration of the second s

Penetration of Proximal Cap or Micro Channel Tracking

STEP 2

Intimal Tracking of CTO-Body

STEP 3

Penetration of Distal cap, Advance to Distal True Lumen

Proximal and Distal Cap Morphology Abrupt ? Tapering?

(2)

1 Proximal cap?
 ⇒Micro channel

Proximal cap ⇒Penetration

3

Proximal cap ⇒Penetration

Distal cap? ⇒Micro channel

Distal cap? ⇒Micro channel

Distal cap ⇒Penetration

Vessel Pathology

** Appropriate wire selection according to the morphology and procedural situation is important.

Micro Channel

Histological average size is 200µm (0.008 inch)

Organizing Thrombus

Sakakura K, et ak. Eur Heart J 2013

Intimal Tracking

- Calcified plaque
- Organizing thrombosis *Keep intimal tracking.*
- Fibrous plaque
- Microchannel
- Proximal cap (Thick, Hard, Convex 凸)
- Distal cap (Thin, Concave 凹)

Characteristics of Wires

1. Tip Load

2. Penetration Force

- 3. Tip Flexibility
- 4. Shaft Support

5. Torque Response

6. Torque Force

7. Tip lubricity

- i. Hydrophilic on Polymer jacket
- ii. Hydrophilic (Hi / Low)
- iii. Silicone

Characteristics of Wires

Outer diameter of the distal end

Tip End Design / Cross Section Area

The ball tip has been sharpened to provide the necessary penetration

Characteristics of Wires

Tip Load

Penetration force high

STEP1. Advance into the CTO Body Identify lesion types.

Proximal cap? Micro channel

Tapered cap
1. Micro channel tracking

 \rightarrow very low tip load, polymer jacket wife^R

2. Loose tissue tracking

 \rightarrow low tip load, polymer jacket wire

XT-A

Distal cap? Micro channel

- Advance along the imagined pass line by angiogram.
- Intentional and careful wire manupilation.

STEP1. Advanced into Body of CTO

Proximal cap Penetration

3. Proximal fibrous or calcified cap

Abrupt proximal cap

 \rightarrow high tip load, tapered, high penetration force

Micro channel

STEP 3 Penetration of Distal Cap, Advanced to Distal True Lumen

Re-Escalation

Require Medium tip load, high torque Penetration wire

Loose tissue tracking High torque wire

Controlled Penetration

Conquest PRO

AWE requires Optimal Backup Force. How do you get Backup Force ?

e

Friction Resistance

Active back up Passive back up

- Larger guiding catheter
- Use Micro catheter, Double lumen catheter
- Anchor balloon
- Guide extension
- Stent jailed wire anchor

Definition of MC maximum supportability

• Catheter back up load:

Load that the catheter is impressed on the greater curvature side by the opposed action when forwarding GW.

Parallel guide wire technique Comparison of stability

Backup with microcatheter for CTO's

CTO Lesion

Supportability test of each GW

Maximum supportability [gf]

Unit:[gf]	Ultimate Bros3	Gaia First	Gaia Second	Gaia Third	Conquest Pro	Conquest Pro12
Caravel	7.8	6.3	7.3	7.7	10.6	15.0
SASUKE: RX: Gaia First	18.7	≧7.3	18.5	18.9	23.2	27.5
SASUKE: RX: Con12	≧20.7	≧8.8	30.8	≧34.2	31.5	≧50.4

%about ≧

It is mentioned when the catheter did not touch the wall (when the catheter touch the wall, it has maximum

supportability) or the GW reached the maximum load.

 \rightarrow Test results with \geq means, [maximum load of GW \leq catheter's supportability] and supportability could be larger.

Supportability of each GW The Ratio of Caravel to SASUKE

The maximum catheter's suppotability of each GW

	Ultimate Bros3	Gaia First	Gaia Second	Gaia Third	Conquest Pro	Conquest Pro12
Caravel (base line)	1.0	1.0	1.0	1.0	1.0	1.0
SASUKE: RX: Gaia First	2.4	≧1.2	2.5	2.5	2.2	1.8
SASUKE: RX: Con12	≧2.7	≧1.4	4.2	≧4.5	3.0	≧3.4

i ≫about ≧

It is mentioned when the catheter did not touch the wall (when the catheter touch the wall, it has maximum supportability) or the GW reached the maximum load.

 \rightarrow Test results with \geq means, [maximum load of GW \leq catheter's supportability] and supportability could be larger.

LAD CTO

Antegrade Wire Escalation and De-escalation

Antegrade Wire Escalation and De-escalation

Messages

- AWE is the essential for CTO PCI.
- Understanding of performance of GW and usage appropriate one for the lesion morphology is important.
- IVUS observation provides useful information not only for the choice of GW, but also help determine to switch to other approach.