Microcatheters

Tips and Tricks for Comples PCI

Toyohashi Heart Center

Maoto Habara, MD

Kinds of Microcatheters

		Outer Lumen			Inner Lumen			
		Entry	Tip	Proximal	Entry	Tip	Proximal	Lengin
Hard	- ASAHI Caravel	0.48mm	0.62mm	0.85mm	0.40mm	0.43mm	0.55mm	135cm
		(1.4Fr)	(1.9Fr)	(2.6Fr)	(0.016")	(0.017")	(0.022")	
	ASAHI Corsair	0.42mm	0.87mm	0.93mm	0.38mm	0.45mm	0.45mm	135cm
		(1.3Fr)	(2.6Fr)	(2.8Fr)	(0.015")	(0.018")	(0.018")	150cm
Soft	Finecross MG	0.60mm	0.60mm	0.87mm	0.45mm	0.45mm	0.55mm	135cm
		(1.8Fr)	(1.8Fr)	(2.6Fr)	(0.018")	(0.018")	(0.021")	150cm
	Finecross GT	0.57mm	0.60mm	0.87mm	0.45mm	0.45mm	0.55mm	135cm
		(1.7Fr)	(1.8Fr)	(2.6Fr)	(0.018")	(0.018")	(0.021")	150cm

Why use microcahteter ?

1 Produce back-up support

Entry Need back up support

Microcatheter Inhibit the GW deflection and support the push force

When GW advance to hard tissue, GW could not enter the lesion with GW defrection at the open space. Microcatheter have no meaning for back up when the microcatheter also undergo a deflection.

Microcatheter has role to constrict the deflection of a GW and transfer the push power from GW proximal to distal tip.

Lesion Body: Push

Microcatheter decrease the GW friction resistance and support the push force

There is the friction resistance around the GW in the CTO lesion. When in the hard tissue or long lesion, the friction resistance of GW would increase. Therefore, it lead inhibit the push force transmission of GW.

Microcathter cover the GW in the CTO lesion. It decrease the GW friction resistance from CTO lesion and improve the push force transmission.

Lesion Body: Torque

Microcatheter decrease the GW friction resistance and improve torque response

Friction resistance from CTO lesion also decrease GW torque response

Microcathter cover the GW in the CTO lesion. It decrease the GW friction resistance from CTO lesion and improve the torque response of GW.

What's a back up support using MC : Open space

What's a back up support using MC ? : within CTO body

What's a back up support using MC

✓ Distance from tip to MC✓ Stiffness of MC

✓ Shaft support of GW

✓ Additional support of GEx

For strong back up support

Why use microcahteter ?

(2) Tip injection

For good image quality of tip injection

Why use microcahteter ?

③ Retrograde channel cross

Usual strategy in retrograde PCI

Tip injection

Image quality is most important

For good image quality of tip injection

After GW channel cross

Microcatheter cross

For channel crossing

Depend on the channel morphorogy

Other kinds of microcahter: Double lumen catheter

Crusade

Sasuke

Double lumen catheter (DLC)

Why use DLC ?

(1) Side branch selection

Limitation of single lumen microcahter

Microcatheter also move during the GW control. It make difficult to select the side branch

For Side Branch

Micro-catheter

Micro-catheter is unstable

DLC is stable

Sever stenosis at LAD & D

Corsair + XT-R

Reverse wire technique

Why use DLC ?

(2) For strong back up support

Side branch DLC (double lumen catheter)

Micro-catheter

DLC

Crusade[®] Side-branch data

Schema of DLC mounted on a side branch guidewire

Stabilization by Rx lumen guidewire advancing side branch, and could provide pushing force of OTW lumen guidewire more (2 ~ 8 fold).

Why use DLC ?

③ For parallel wire technique

Parallel Wire Technique

LAO 50

RAO 40

Caravel + XT-R

Caravel change to DLC

Crusade + Gaia2nd

- Understanding microcatheter (MC) is important to accumulate experience in PCI
- Knowing MC basic performance and how it works in different scenes improves comprehension of each MC's characteristics.
- Choosing the appropriate MC depends on the case will decrease the risk and facilitate the procedure.
- Having a basic understanding of MC is one of the short cuts to improve in PCI