Many Many Stents: What Should I Select?

Alan C. Yeung, MD Li Ka Shing Professor of Medicine Chief, Division of Cardiovascular Medicine Stanford University School of Medicine

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

- Grant/Research Support
- Scientific Advisory Board
- Executive Physician Council

Company

- Abbott Vascular, Medtronic
- Medtronic, Abbott Vascular
- Boston Scientific Corp

PROGRESS WITH METALLIC DRUG-ELUTING STENTS

Piccolo, Giustino, Mehran, Windecker Lancet 2015;386:702-713

SAFETY AND EFFICACY OF BMS, EARLY-DES AND NEW-DES

Byrne et al. *Eur Heart J* 2015;36:2608-20

RECOMMENDATIONS FOR DES USE

New-generation DES are recommended in all lesion and patient subsets!

CURRENT ITERATIONS OF DES TECHNOLOGY

Häner et al. Eur Heart J 2019;40:2616-2619

Thinner Struts

IMPACT OF STRUT THICKNESS ON ARTERIAL HEALING AND THROMBOGENICITY

Koppara et al. Circ Cardiovasc Interv 2015;8:e002427

ULTRATHIN VS. THICK STENT STRUTS

Bangalore et al. Circulation 2018;138:2216-2226

- Meta-analysis of 11658 pts in 10 RCTs comparing ultrathin vs. thicker 2G DES
- Primary endpoint: TLF at 1 year
- Orsiro 46%, MiStent 6%, BioMime 1%, Xience 24%, Resolute 11%, Nobori 11%

	Ultra-Th	nin	2 nd Gene	ration			% Weight	
Study	Events	Ν	Events	Ν		RR (95% CI)	(D+L)	
Orsiro					1			≂
BIOFLOW II	19	298	12	154		- 0.82 (0.40, 1.69)	4.83	
BIOFLOW IV	20	354	9	176		1.10 (0.50, 2.43)	4.08	
BIOFLOW V	52	884	41	450		0.65 (0.43, 0.97)	15.07	
BIORESORT	47	1169	53	1173	-	0.89 (0.60, 1.32)	16.37	
BIOSCIENCE	69	1063	70	1056	-	- 0.98 (0.70, 1.37)	22.84	
ORIENT	6	250	4	122		0.73 (0.21, 2.59)	1.58	
PRISON IV	6	165	8	165			2.25	L year ILF
SORT OUT VII	48	1261	58	1264	-	- 0.83 (0.57, 1.22)	17.26	
D+L Subtotal (I-so	uared = ().0%, p	= 0.881)		8	0.85 (0.71, 1.01)	84.29	16% risk reduction
I-V Subtotal					\$	0.85 (0.71, 1.01)		
MiStent								Driven by TV-MI
DESSOLVE-III	40	703	45	695		- 0.88 (0.57, 1.35)	13.92	
D+L Subtotal (I-so	uared = N	A, p =	NA)		\triangleleft	> 0.88 (0.57, 1.35)	13.92	
I-V Subtotal			<i>.</i>			> 0.88 (0.57, 1.35)		
D' 11'					1			No difference in
BioMime	-	470	0	00	_	0.40 (0.40.4.00)	4 70	cardiac death and ID TID
merit-v	5	170	6	86	1.	- 0.42 (0.13, 1.38)	1.79	Cardiac death and ID-ILR
D+L Subtotal (I-so	juared = r	NA, p =	NA)		-	0.42 (0.13, 1.38)	1.79	
I-V Subtotal						0.42 (0.13, 1.38)		
All Stents		00/	0.004)		~	0.84 (0.70, 0.00)	100.00	
D+L Overall (I-squ	lared $= 0.$	0%, p -	0.004)		×	0.84 (0.72, 0.99)	100.00	
I-V Overall					V	0.64 (0.72, 0.99)		
					1 1	1		-
					.1 1	10		
				Favor	s Ultra-Thin	Favors 2 nd Generation		

BP vs DP vs no P

BP- vs. DP-DES: META-ANALYSIS

El-Hayek et al. JACC Cardiovasc Interv 2017;10:462-473

TVR

@ 1 year

	BP-DES		DP-DES		Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl	
BASKET-PROVE II	38	765	36	765	5.7%	1.06 [0.68, 1.65]		
BIOFLOW-II	22	298	13	154	2.7%	0.87 [0.45, 1.69]		
BIOSCIENCE	81	1063	75	1056	11.9%	1.07 [0.79, 1.45]	+	
CENTURY II	21	551	17	550	2.7%	1.23 [0.66, 2.31]		
COMPARE II	137	1795	59	912	12.4%	1.18 [0.88, 1.58]	-	
DESSOLVE II	1	117	2	60	0.4%	0.26 [0.02, 2.77]		
EVERBIO	8	80	14	80	2.2%	0.57 [0.25, 1.29]		
EVOLVE FHU	7	191	10	98	2.1%	0.36 [0.14, 0.91]	1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -	
EVOLVE II	32	846	29	838	4.6%	1.09 [0.67, 1.79]		
SAR-TEST 4	170	1299	77	652	16.3%	1.11 [0.86, 1.43]	+	
LONG-DES V	9	245	5	255	0.8%	1.87 [0.64, 5.51]		
NEXT	177	1617	155	1618	24.6%	1.14 [0.93, 1.40]	+	
SEPARHAM et al	0	100	0	100		Not estimable		
SORT OUT VI	71	1497	67	1502	10.6%	1.06 [0.77, 1.47]	+	
TARGET I	1	227	3	231	0.5%	0.34 [0.04, 3.24]		
CU et al	7	168	15	156	2.5%	0.43 [0.18, 1.03]		
Fotal (95% CI)		10859	}	9027	100.0%	1.06 [0.96, 1.18]		
	792		577					

BP vs. DP DES: FROM SCAAR REGISTRY

Buccheri et al. Eur Heart J 2019;40:2607-2615

- Patients with CAD enrolled into SCAAR registry from 2011 to 2016
- Age 67 yo, Male 73%, DM 22%, ACS 78%
- BP: Orsiro 5%, Synergy 10%, Ultimaster 2%
- DP: Xience 17%, Resolute 34%, Promus 32%

No significant difference between BP- and DP-DES

NEOATHEROSCLEROSIS IN BP VS. DP DES

Guagliumi et al. Eur Heart J 2018;39:2448-2456

- 90 patients with MVD randomized to BP-EES vs DP-ZES
- Primary endpoint: % of patients with neoatherosclerosis at 18 months
- Age 64 yo, Male 80%, DM 174%, ACS 70%

Patients with frames of

No significant difference between BP- and DP-DES

BioFreedom Drug Coated Stent (DCS)

Potential Advantages:

- Rapid drug transfer to vessel wall (98% within one month²)
- Avoid possible polymer-related adverse effects
- Safe to shorten DAPT?

Leaders Free: Primary Efficacy Endpoint (Clinically-Driven TLR)

Urban P et al. *NEJM* 2015;373:2038-47

SORT OUT IX

Design

Randomized, multicenter, single-blind, all-comers, two-arm, non-inferiority trial comparing BioFreedom to Orsiro

Objective

To compare the safety and efficacy of the polymer free biolimus A9-coated BioFreedom stent and the thin strut biodegradable polymer sirolimus-eluting Orsiro stent in an all-comer population

Primary Endpoint

Target lesion failure: a composite of cardiac death, myocardial infarction (not related to other than index lesion) or target lesion revascularization within 1 year

STEMI 24% B2/C 61% Bifurcation 20% CTO 5%

SORT OUT IX Primary Endpoint: TLF at 1 Year

Okkels Jensen et al. on behalf SORT OUT IX Investigators, TCT 2018 - Oral presentation

SORT OUT IX

Target Lesion Revascularization at 1 Year

SORT OUT IX TLF at 1 Year: Subgroup Analysis

Dec resulting Subgroups	Pick Potio	Events (%)		P Value for
	KISK KALIO	Biolimus-eluting Stent	Sirolimus-eluting Stent	Interaction
Acute Coronary Syndrome No	1.74 (1.08 – 2.79)	48 (6.4)	27 (3.7)	
Acute Coronary Syndrome Yes	0.97 (0.61 – 1.56)	34 (4.1)	36 (4.2)	0.09
Age <=65	1.60 (0.86 – 2.97)	25 (3.8)	17 (2.4)	
Age >65	1.17 (0.79 – 1.73)	57 (6.3)	46 (5.3)	0.40
Diabetes Melitus No	1.34 (0.90 – 1.99)	57 (4.5)	43 (3.4)	
Diabetes Melitus Yes	1.23 (0.68 – 2.23)	25 (8.2)	20 (6.6)	0.83
LAD No	1.52 (0.93 – 2.48)	41 (5.2)	27 (3.4)	
LAD Yes	1.15 (0.73 – 1.80)	41 (5.2)	36 (4.5)	0.40
Lesion Type C	1.21 (0.76 – 1.92)	41 (6.9)	33(5.6)	
Lesion Type Not C	1.40 (0.87 – 2.24)	41 (4.2)	30(3.0)	0.68
Male No	1.14 (0.57 – 2.30)	17 (4.8)	15 (4.2)	
Male Yes	1.36 (0.93 – 1.98)	65 (5.3)	48 (3.9)	0.67
Multivessel Disease No	1.24 (0.85 – 1.79)	63 (4.8)	51 (3.9)	
Multivessel Disease Yes	1.62 (0.78 – 3.36)	19 (7.3)	12 (4.5)	0.52
One Stent Per Patient No	1.16 (0.75 – 1.78)	45 (4.5)	39 (3.9)	
One Stent Per Patient Yes	1.50 (0.88 – 2.56)	34 (6.0)	23 (4.0)	0.45
Previous MI No	1.33 (0.91 – 1.93)	65 (5.0)	49 (3.8)	
Previous MI Yes	1.62 (0.70 – 3.77)	14 (6.3)	9 (3.8)	0.36
Previous PCI No	1.22 (0.81 – 1.84)	52 (4.3)	43 (3.5)	
Previous PCI Yes	1.75 (0.92 – 3.30)	27 (8.4)	15 (4.8)	0.98
STEMI No	1.39 (0.96 – 2.02)	68 (5.6)	48 (4.1)	
STEMI Yes	1.01 (0.50 - 2.10)	14 (3.8)	15 (3.8)	0.44
Overall	1.31 (0.94 – 1.82)	82 (5.2)	63 (4.0)	
0.50 1 2 4 Biolimus-eluting Stent better Sirolimus-eluting Stent better				

SUB-GROUPS OF CAD PATIENTS CAN WE EXPECT DIFFERENCES?

BIOSTEMI

DESIGN

Prospective, multicenter, randomized, controlled, superiority trial.

OBJECTIVE

To investigate the superiority of ultrathin-strut Orsiro BP-SES to Xience DP-EES in STEMI patients undergoing primary PCI.

COORDINATING CLINICAL INVESTIGATORS

Prof. Dr. Thomas Pilgrim, Bern, Switzerland Dr. Juan F. Iglesias, Lausanne, Switzerland PD Dr. Olivier Muller Lausanne, Switzerland

PRIMARY ENDPOINT

Target Lesion Failure (TLF) at 12 months, defined as a composite of cardiac death, target vessel re-infarction, or clinically-indicated TLR.

BIOSTEMI

ULTRATHIN BP-DES VS. THIN DP-DES IN STEMI

Iglesias et al. Lancet 2019

- 1300 STEMI patients randomized to BP-SES vs. DP-EES
- Primary enpdoint: TLF at 1 year
- Age 62 yo, male 80%, DM 10%, mean stent length 32mm

<u> TLF</u>

DES with **biodegradable polymer** and **ultrathin struts** may be the best practice in STEMI patients.

PCI STRATEGY FOR IN-STENT RESTENOSIS

Siontis et al. Lancet 2015;386:655-664

• Meta-analysis of 5923 ISR patients from 27 trials

	EES	DCB	SES	PES
EES	99·6 (0·98)	-9·0% (-15·8 to -2·2)	-9·4% (-17·4 to -1·4)	–10·2% (–18·4 to –2·0)
DCB		73·7 (0·00)	-0·2% (-6·2 to 5 <mark>·</mark> 6)	-1·2% (-6·4 to 4·2)
SES	*	\).##	72·8 (0·01)	-0-8% (-6-4 to 4-6)
PES			3 2 3)	67·7 (0·01)

Estimated differences of %DS

Odds ratios for TLR

	EES	DCB	PES	SES
EES	99·1 (0·97)	0.36 (0.14-0.94)	0.34 (0.12–1.00)	0.34 (0.12-0.97)
DCB		73.7 (0.01)	0.93 (0.51-1.71)	0.93 (0.55-1.58)
PES			70.7 (0.02)	1.00 (0.59–1.68)
SES				70.0 (0.01)

- EES was associated with the best angiograpic and clinical outcomes
- DCB provided favourable results without a new stent layer

EVOLVE Short DAPT: Mauri, TCT 2015; SENIOR: Varenne, O. et al. Lancet 2017; POEM: Clinicaltrials.gov NCT03112707; IDEAL LM: Van Geuns, EuroPCR 2017

EVOLVE Short DAPT Study Design

Prospective, multicenter, single-arm study powered to define safety of 3-month DAPT in high bleeding risk (HBR) patients treated with SYNERGY

Time in months after SYNERGY stent implantation

Co-Primary endpoints: Death/MI and ARC definite/probable ST between 3-15 months Secondary endpoint: BARC 2/3/5 bleeding between 3-15 months (patients not on chronic anticoagulation)

EVOLVE Short DAPT Patient Disposition

Clinical Outcomes between 3-15 Months

Analysis Population (N=1457)

Binary rates; denominator includes patients with sufficient f/u or having a CEC event; *Non-hierarchical

2019

XIENCE Short DAPT Program

PI & Study Chair: Roxanna Mehran Xience 28 Co-PI: Marco Valgimigli

ONYX ONE MONTH DAPT PROGRAM

STUDYING 1-MONTH DAPT IN HIGH BLEEDING RISK PATIENTS

Onyx ONE Global Study Stephan Windecker

Onyx ONE

Primary Safety Endpoint: Cardiac Death, MI, or ST

Onyx ONE

Powered Secondary Effectiveness Endpoint: TLF

Onyx ONE

STENT CHOICE: DECISION TREE

