1. PDA morphology in infants with ductdependent pulmonary circulation

2. PDA stenting – Tortuosity and branch PA stenosis

3. PDA stenting: Strategy & approach to consider.

## Assessment of feasibility for PDA stenting : Cardiac cath



Overlapping structures – multiple angiographic angulations to profile PDA, may <u>obscure the presence of</u> <u>branch PA stenosis</u>, <u>underestimate</u> <u>length of PDA</u>



### PDA Morphology by CTA and impact on PDA stenting strategy

Single Centre; Prospective study: January 2013 – Dec 2014

All new infants less than 6 months with ductal dependent pulmonary artery circulation and had CTA done.

PDA morphology: Origin/type of PDA; site of insertion; tortuosity and presence of branch PA stenosis.

Stenting strategy: Route of stenting – transfemoral, transaxillary or transcarotid.

# **RESULTS - Demographic**

- Total 84 patients were analyzed
- 83 had single PDA
- 1 –bilateral PDA
- Mean age: 0.9 month (range: 10 days to 6 months)
- Mean weight: 3.6kg (range 2kg- 6.8kg)
- Prostaglandin infusion: 58 patients (69%)

### **RESULTS - DIAGNOSIS**

#### Total infants: 84 2 Ventricle: 38 (45.8%)

| DIAGNOSIS  | n(%)      |
|------------|-----------|
| PAVSD      | 20 (23.8) |
| TOF/PS     | 4 (4.7)   |
| DORV/PS    | 6 (7.1)   |
| TGA/VSD/PS | 3 (3.5)   |
| OTHERS     | 5 (5.9)   |

#### Single Ventricle: 26 (30.9%)

| DIAGNOSIS                | n(%)     |
|--------------------------|----------|
| TRICUSPID<br>ATRESIA     | 9 (10.7) |
| UNBALANCED<br>AVSD       | 5 (5.9)  |
| DILV                     | 2 (2.3)  |
| DORV/single<br>ventricle | 2 (2.3)  |
| OTHERS                   | 8 (9.5)  |

#### PAIVS – 20 PATIENTS (23.8%)

#### **RESULTS:** The Origin of PDA



TYPE I: PDA from decending Ao

n = 12 (14.46 %)

 PAIVS
 11

 2-Ven
 1



TYPE II : PDA frm distal transverse arch

#### n= 56 (67.47%)

| PAIVS | 8  |
|-------|----|
| 2-Ven | 30 |
| S-Ven | 18 |



TYPE III: PDA proximal transverse arch.

| n=9 (1 | 0.48%) |
|--------|--------|
| PAIVS  | 1      |
| 2-Ven  | 2      |
| S-Ven  | 6      |



TYPE IV: PDA from subclavian artery

| n = 6 | (7.23%) |
|-------|---------|
| 2-Ven | 4       |

| 2-Ven | 4 |
|-------|---|
| S-Ven | 2 |

#### **RESULTS: Insertion & Branch PA stenosis**

Insertion to LPA: 38

#### BPA stenosis 30 (79%)





Insertion to RPA: 17

#### BPA stenosis 15 (88%)





Insertion to Central PA: 28

#### BPA stenosis 9 (33%)



## **RESULTS:** Tortuosity



25/06/2014 11:44:08 2893955/792 APPLIED ---THK: 2

Spin: -83

FFS

Z: 1.06 C: 194 W: 722

## **BILATERAL PDA**



## PDA morphology not suitable for stenting



Very tortuous PDA (2 bends/

>

# Long PDA from LSCA to proximal LPA, severe prox. LPA stenosis



## **Treatment received**

#### TORTOUSITY

#### **BRANCH PA STENOSIS**

|                  | PDA Stent | BT Shunt  |
|------------------|-----------|-----------|
| Tortuous         | 8(33.3%)  | 17(66.7)  |
| Non-<br>tortuous | 28(58.3%) | 20(41.7%) |

|                   | PDA Stent | BT Shunt  |
|-------------------|-----------|-----------|
| Br PA<br>stenosis | 22(46.8%) | 26(53.2%) |
| No stenosis       | 14(56.0%) | 11(44.0%) |

P>0.05

p<u><</u>0.05

## Suggested approach



Origin Des

Approach: Femoral



Type II Origin distal Transverse arch

Approach: FA/FV and axillary



Type III Origin prox transverse arch

Approach: Axillary artery



Type IV Origin subclavian artery

2855

Approach: FA

#### Day 8; 3.2 Kg; PGE1 TOF/PA; Type II by by Echocardiography Decided to proceed for PDA stenting without prior CTA



4F femoral artery 5F femoral vein





# Neonate with single ventricle type II PDA to LPA, LPA stenosis







2014

Trans-axillary As an option in Type II And III

### PDA stenting with branch PA stenosis Jan 2014 – Mac 2015: n = 29

| Route PDA stenting                   | 29 (100%)      |
|--------------------------------------|----------------|
| -transfemoral                        | 15 (51.7%)     |
| -transaxillary                       | 9 (31.0%)      |
| -transvenous                         | 4 (13.8%)      |
| -transcarotid                        | 1 (3.4%)       |
| Mean fluoroscopy time (minute)       | 19 <u>+</u> 11 |
| Mean procedure time (minute)         | 81 <u>+</u> 35 |
| Median ICU stay (day)                | 3 (2-12)       |
| Median length of hospital stay (day) | 7 (4-17)       |

## Summary: PDA morphology on CTA

| PDA type                                                                                                    | Insertion<br>site PA<br>branch | PAIVS     | Bi- Vent           | Single<br>Vent | Branch PA<br>stenosis |
|-------------------------------------------------------------------------------------------------------------|--------------------------------|-----------|--------------------|----------------|-----------------------|
| L (12)                                                                                                      |                                | 11 (550/) | 1 (2 00/)          | 0              | 2 (16 70/)            |
| <ul> <li>Recommended in difficult anatomy.</li> <li>Helpful in determining PDA stenting strategy</li> </ul> |                                |           |                    |                |                       |
| 1\/ (6)                                                                                                     | 6 (AII)                        | 0         | <i>∕</i> / (11 ∩%) | 2 (8%)         | 5 (83%)               |
| 10 (0)                                                                                                      | U (All)                        | 0         | 4 (11.070)         | 2 (070)        | 5 (0576)              |
| Majority of patients with cyanotic CHD with single or biventricular morphology have type                    |                                |           |                    |                |                       |

- Majority of patients with cyanotic CHD with single or biventricular morphology have type II PDA
- Patients with PAIVS usually has type I PDA, majority inserted onto MPA and rarely has branch PA stenosis
- Majority Type II and III PDA have insertion site to branch PA and associated with branch PA stenosis at the site of insertion