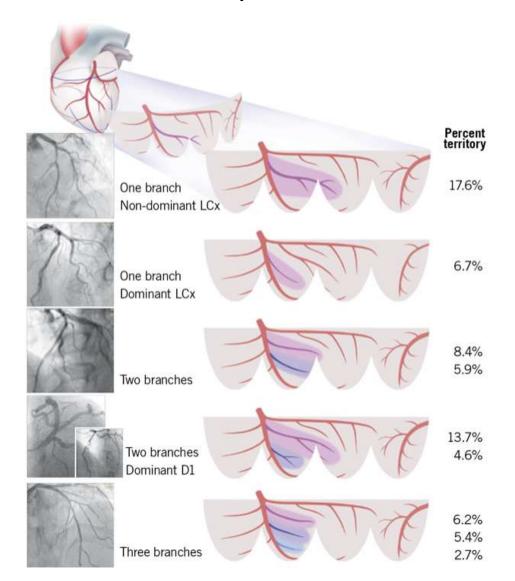
To Kiss, or Not to Kiss, That Is the Question: Optimization of the 1-Stenting in Bifurcation PCI

Alaide Chieffo, MD

Interventional Cardiology Unit IRCCS San Raffaele Scientific Institute Milano, Italy

Importance of SB

Attribute	Condition	%FMM <10%	%FMM ≥10%	<i>p</i> -value	
Size	≥2.5 mm	126 (60.3)	83 (39.7)	-0.0001	
	<2.5 mm	352 (99.2)	3 (0.8)	<0.0001	
Number	1 branch	41 (41.0)	59 (59.0)		
	2 branches	273 (91.6)	25 (8.4)	<0.0001	
	≥3 branches	164 (98.8)	2 (1.2)		
D _{1/2} dominance	Yes	16 (44.4)	20 (55.6)	<0.0001	
	No	257 (98.1)	5 (1.9)		
LCx dominance	Yes	166 (93.3)	12 (6.7)	0.0001	
	No	312 (80.8)	74 (19.2)		

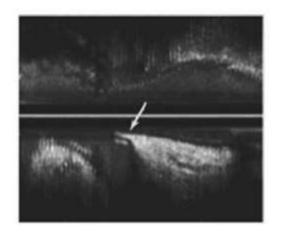

Table 2. Angiographic attributes of diagonal branches and %FMM.

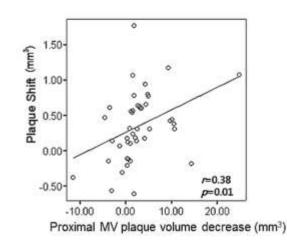
The numbers in the two subgroups are expressed in n (%). $D_{1/2}$ dominance denotes the presence of a dominant branch in case of 2 diagonal branches. %FMM: percent fractional myocardial mass;

LCx: left circumflex artery

Jeon et al Eurointerven

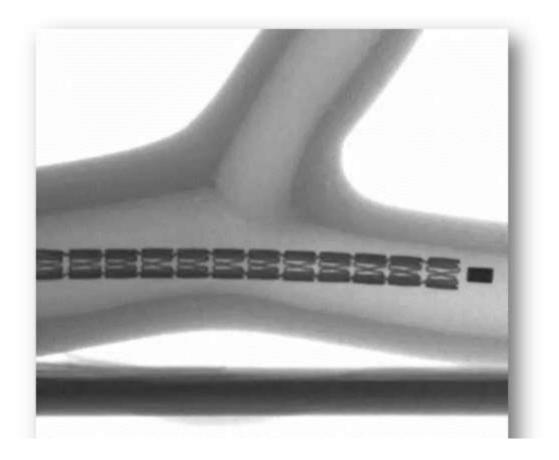
Importance of SB

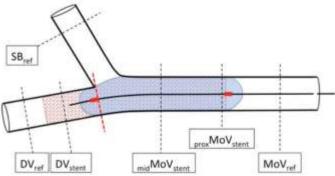

Jeon et al Eurointerven


Kissing Balloon Inflation and POT

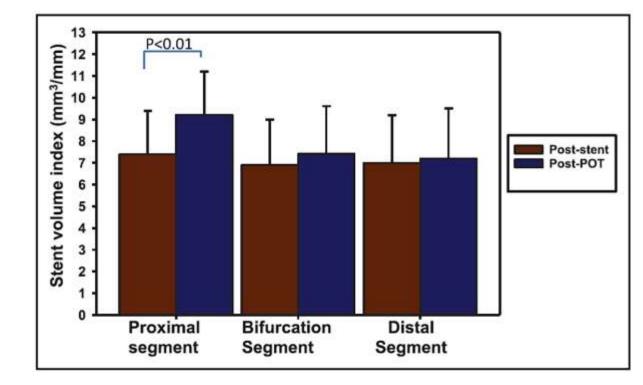
Both techniques are intended to limit the risk of side branch compromise

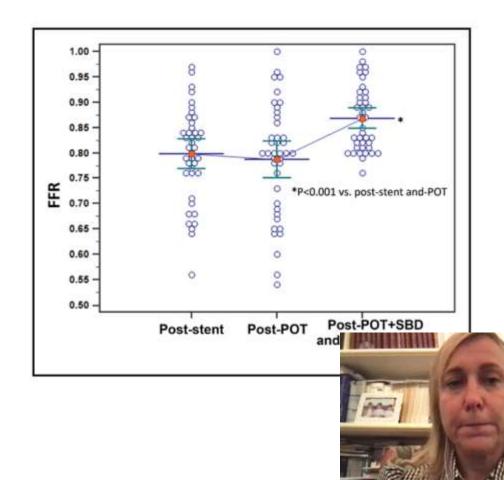
Two mechanisms


- Spiky carena shift (De Lezo Eurointervention 2012; 7:1147-54)
- Longitudinal plaque shift from proximal main vessel (Xu Circ CVI 2012; 5:657-62)


Distal MB sizing \rightarrow no carina shift \rightarrow need for POT

Key points for POT

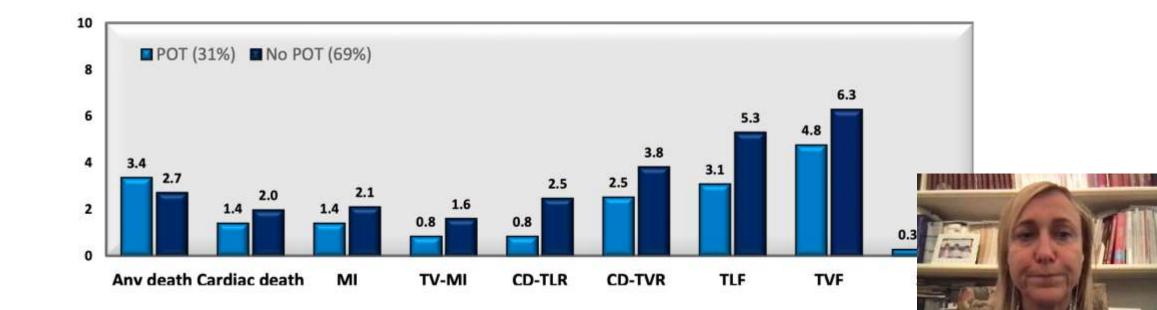

- Place the stent proximally enough (6 or 8 mm)
- POT before wire exchange
- Know your NC balloon (shoulder/marker)
- Sized to proximal reference (1:1) as calculated by: D MV prox= 0.67x(D MV distal+D SB)
- Distal marker at carena level.



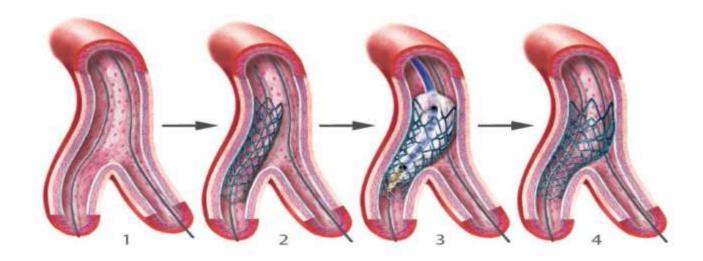
Select the view with maximal angle to avoid overlap

POT

COBIS II POT Study Clinical outcomes


Patients with SB diameter ≥ 2.5 mm in QCA

Propensity score-matching population (total 1901 pts)


	POT (n=204)	No POT (n=665)	HR (95% CI)	p value
MACE	6 (2.9)	78 (11.7)	0.25 (0.11-0.60)	0.002
All-cause death	7 (3.4)	25 (3.8)	0.97 (0.41-2.33)	0.95
Cardiac death	1 (0.5)	9 (1.4)	0.37 (0.05-2.97)	0.35
Myocardial infarction	0	12 (1.8)		-
Stent thrombosis	2 (1.0)	8 (1.2)	0.98 (0.20-4.77)	0.98
TLR	5 (2.5)	61 (9.2)	0.27 (0.10-0.69)	0.006
MV, proximal	3 (1.5)	40 (6.0)	0.25 (0.07-0.82)	0.02
MV, distal	4 (2.0)	47 (7.1)	0.28 (0.10-0.80)	0.02
SB	4 (2.0)	35 (5.3)	0.37 (0.13-1.09)	0.07
Both vessels	5 (2.5)	48 (7.2)	0.34 (0.13-0.88)	0.03

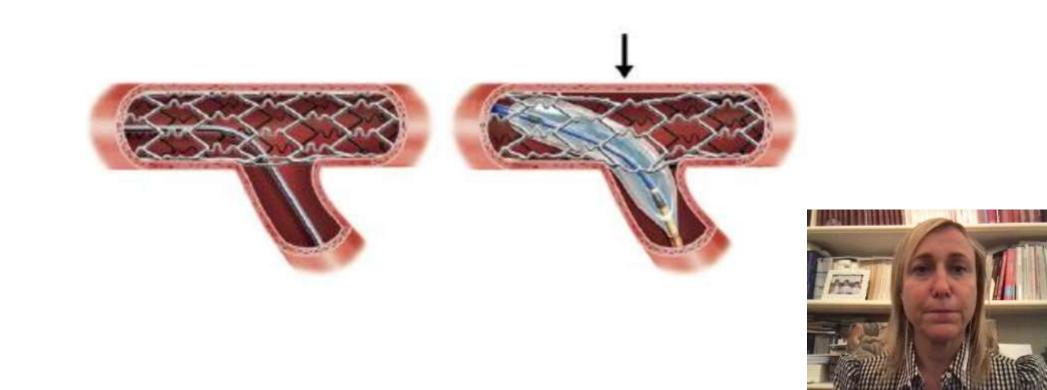
E-ULTIMASTER 1168 Bifurcations: Role of POT

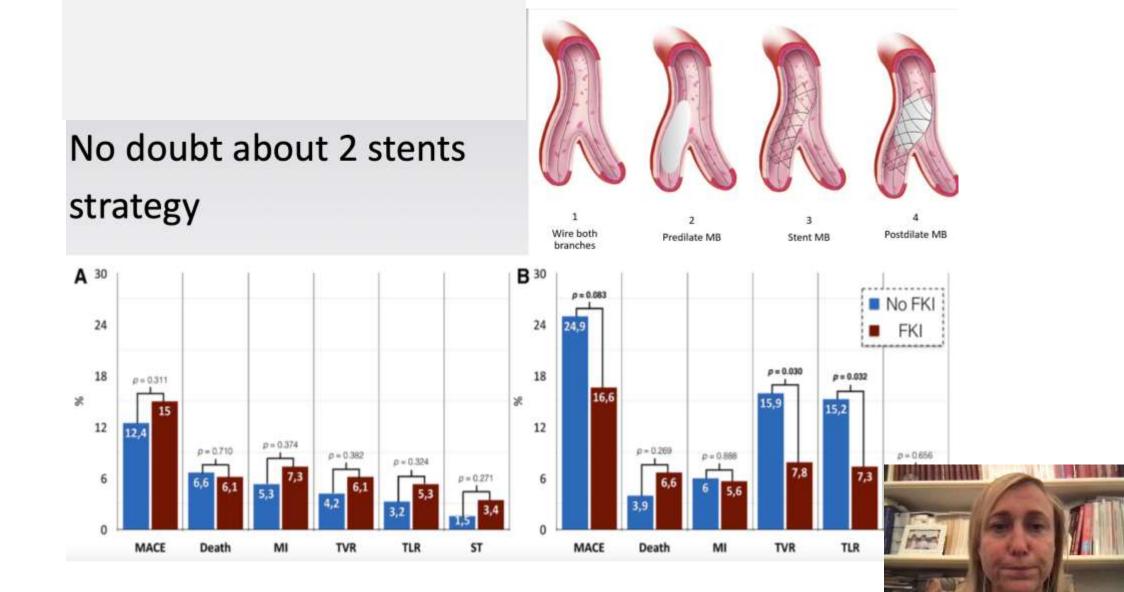
1-year clinical outcomes

Provisional SB: Stand-alone POT

« NORDIC III spirit »

Potential benefits of SB opening

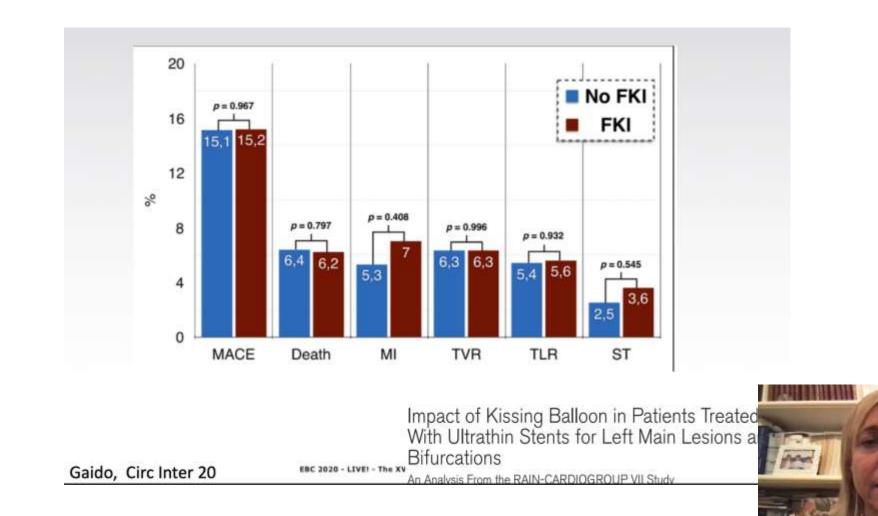

Avoid peri-procedural occlusion → NonQ MI


Relief of angina

Keep access for future interventions

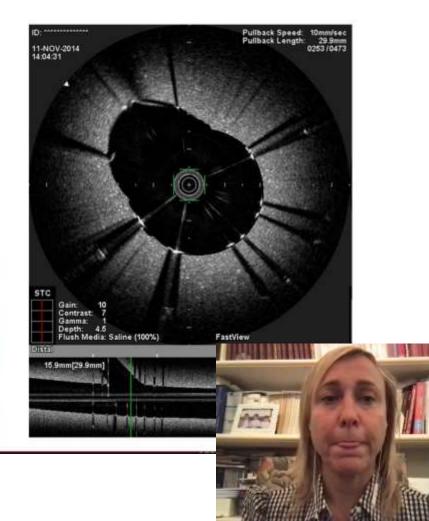
SB fenestration \rightarrow Stent distorsion \rightarrow need for KBT

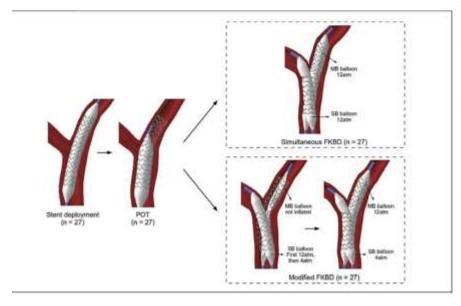
NORDIC III


	No FKBD (n=239), n (%)	FKBD (n=238), n (%)	Р
Noncardiac death	0 (0)	1 (0.4)	0.49
Cardiac death	0 (0)	2 (0.8)	0.24
Index lesion MI*	3 (1.3)	1 (0.4)	0.62
TLR	4 (1.7)	3 (1.3)	1.00
CCS class \geq 2 angina	29 (12.0)	28 (11.7)	1.00
Stent thrombosis	1 (0.4)	1 (0.4)	1.00

FKI vs No FKI

Study (N pts)	Technique	Death/MI	TLR	ST
THUEBIS (120)	simple	=	=	=
NORDIC III (477)	simple		=	=
CORPAL (244)	simple	=	=	=
Yamawaki (253)	simple	=	-	=
COBIS II (1901)	simple	=	++	=
Ge (181)	complex	=	+	
TRYTON (745)	Complex	+	=	

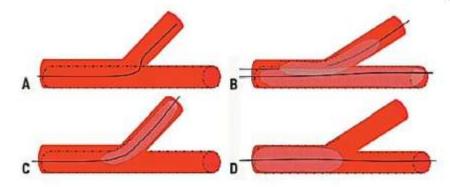

FKI vs No FKI


The « optimized » KBT

- Distal cell wring
- NC balloons sized to distal ref
- Minimal overlap

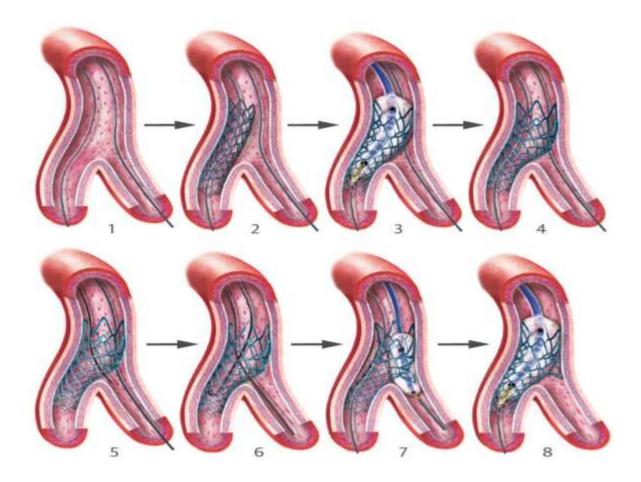
A2 After FKB alone – proximal "bottleneck" effect

Asymetrical KBT for less « bottle neck » effect


Table 1. Comparison of the Results	Obtained Using the Simultaneous
and Modified FKBD Strategies	

	Simultaneous FKBD	Modified FKBD	p Value
Ostial area stenosis	20 ± 11	15 ± 9	<0.001
Ellipticity index	1.36 ± 0.06	1.17 ± 0.05	< 0.001
Malapposed struts	6.4 ± 3.4	$\textbf{6.3} \pm \textbf{3.6}$	0.212

Values are mean \pm SD. Modified FKBD results in less ostial stenosis and decreases elliptical deformation in the proximal main vessel. The amount of stent strut malapposition was similar with both techniques.


FKBD = final kissing balloon dilation.

Final POT to eliminate final ellipticity

	After SB opening	After kissing balloon (KB)	After final proximal inflation (FPI)	<i>p</i> value (FPI vs. KB)	
% Mallaposed struts proximal MV	69.4±24.3	33.4±37.6	0.6±2.3	0.02 *	
MSA proximal (mm ²)	5.9±0.3	6.8±0.4	8.5±0.6	<i>p</i> <0.0001	***
MSA MB (mm ²)	3.7±0.9	6.0±0.7	6.2±0.5	0.50	ns
MLD proximal	2.7±0.0	3.0±0.1	3.3±0.1	p<0.0001	***
Max LD proximal	2.8±0.1	4.1±0.2	3.8±0.2	0.01	**
MLD ostium MB	2.1±0.3	2.7±0.2	2.7±0.2	1.00	ns
MLD distal MB	2.7±0.1	2.8±0.1	2.8±0.2	1.00	ns
Ratio dist/prox MLD	0.97±0.04	0.90±0.09	0.81±0.07	0.03	1000 I
Stent eccentricity Index	0.96±0.02	0.72±0.06	0.90±0.04	p<0.0001	Pro
% Ostium stenosis	25.3±9.8	21.8±8.0	19.0±8.2	0.47	Im

POT/Side/POT: an alternative ?

Conclusions

- Bifurcation stenting should follow anatomy
- POT is useful in all bifurcation as distal vessel sizing limits carina shift : 1 stent-2diameters concept
- KBT may be useful after single stenting and necessary after double stenting but could be deleterious in XXO lesions
- Bench & Virtual evaluations suggest:
 - A benefit from new kissing balloon technique
 - A need for final POT
 - A possible competition with POT/Side/POT (versus POT/Kiss/POT)
- Clinical validation of « optimized » KBT (on top of a start of a