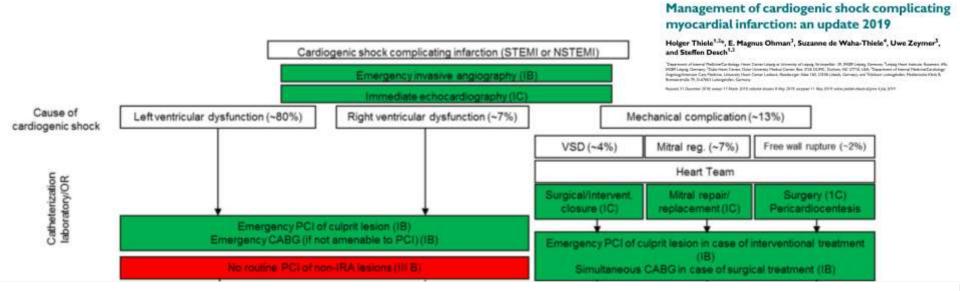


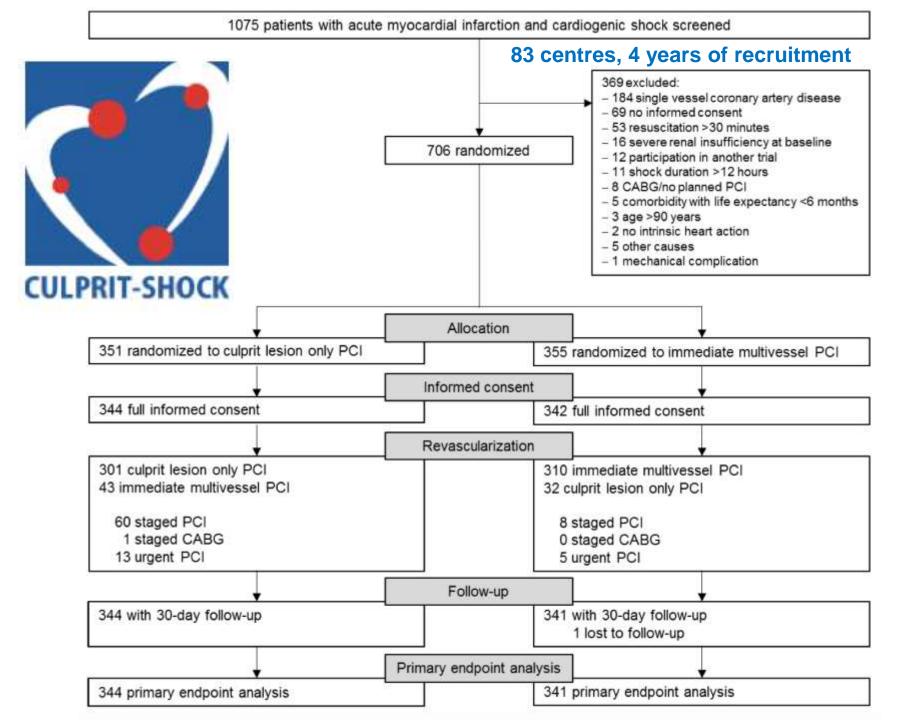
Can PCI save lives in patients with severe LV dysfunction?

Divaka Perera

Professor of Cardiology, Kings College London Consultant Cardiologist, Guy's & St Thomas' Hospital, London

No conflict of interests to declare





Can PCI save lives in patients with ACUTE

severe LV dysfunction?

(Cardiogenic Shock)

	Characteristic	Culprit-Lesion-Only PCI Group (N=344)	Multivessel PCI Group (N=342)
	Heart rate — beats/min		
	Median	90	91
	Interquartile range	73–109	72–107
	Creatinine — mg/dl‡		
	Median	1.17	1.20
	Interquartile range	0.90-1.66	0.90-1.68
	Creatinine clearance — ml/min		
	Median	64	66
	Interquartile range	42–95	43–93
	No. of affected vessels — no./total no. (%)		
CULPRIT-SHOCK	1	3/343 (0.9)	2/342 (0.6)
	2	122/343 (35.6)	124/342 (36.3)
	3	218/343 (63.6)	216/342 (63.2)
	Vessel related to the infarction — no./total no. (%)		
	Left anterior descending artery	132/343 (38.5)	156/342 (45.6)
	Left circumflex artery	76/343 (22.2)	70/342 (20.5)
	Right coronary artery	102/343 (29.7)	89/342 (26.0)
	Left main artery	31/343 (9.0)	22/342 (6.4)
	Bypass graft	2/343 (0.6)	5/342 (1.5)
	≥1 Chronic total occlusion — no./total no. (%)	77/344 (22.4)	82/342 (24.0)
	Left ventricular ejection fraction — %		
	Median	33	30
	Interquartile range	25–40	21–40

Immediate PCI of nonculprit lesions — no./total no. (%)

Impella 2.5 percutaneous ventricular assist device

Impella CP percutaneous ventricular assist device

Extracorporeal membrane oxygenation

Other

TandemHeart percutaneous ventricular assist device

Immediate complete revascularization achieved — no./total no. (%)	26/344 (7.6)	277/342 (81.0)	<0.001
Total dose of contrast material — ml			<0.001
Median	190	250	
Interquartile range	140–250	200–350	
Total duration of fluoroscopy — min			<0.001
Median	13	19	
Interquartile range	7–20	12–29	
Staged PCI of nonculprit lesions — no./total no. (%)	60/344 (17.4)	8/341 (2.3)	<0.001
Staged coronary-artery bypass grafting — no./total no. (%)	1/344 (0.3)	0/341	>0.99
Mechanical circulatory support — no./total no. (%)			
Any	99/344 (28.8)	95/342 (27.8)	0.77
Intraaortic balloon pump	25/99 (25.3)	26/95 (27.4)	0.74

43/344 (12.5)

16/99 (16.2)

30/99 (30.3)

2/99 (2.0)

18/99 (18.2)

12/99 (12.1)

310/342 (90.6)

18/95 (18.9)

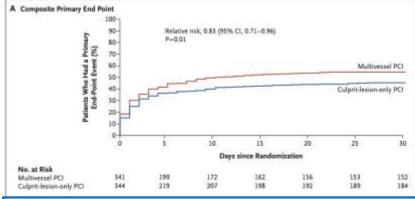
18/95 (18.9)

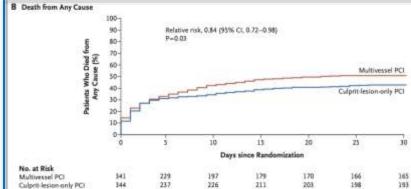
27/95 (28.4)

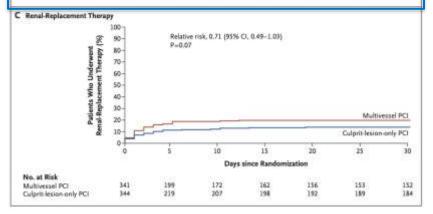
8/95 (8.4)

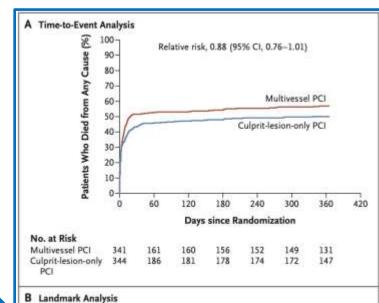
0/95

< 0.001


0.61


0.07


0.50


0.09

0.40

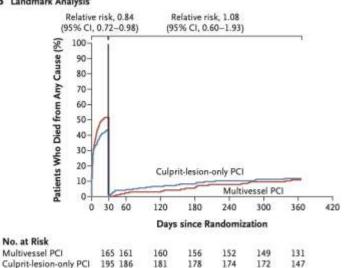


Figure 2. Time-to-Event and Landmark Analyses for Death from Any Cause through 1 Year.

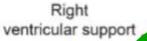
Conclusions: MV-PCI in Cardiogenic Shock

Current guidelines DO NOT recommend routine multivessel PCI (Class III)
... during the index procedure

HOWEVER, the safety and efficacy of STAGED non-culprit PCI is not known

In my own practice, the decision to treat non-culprit disease (and if so, when) is based on the risk: benefit of treating EACH lesion and the state of the subtended myocardium

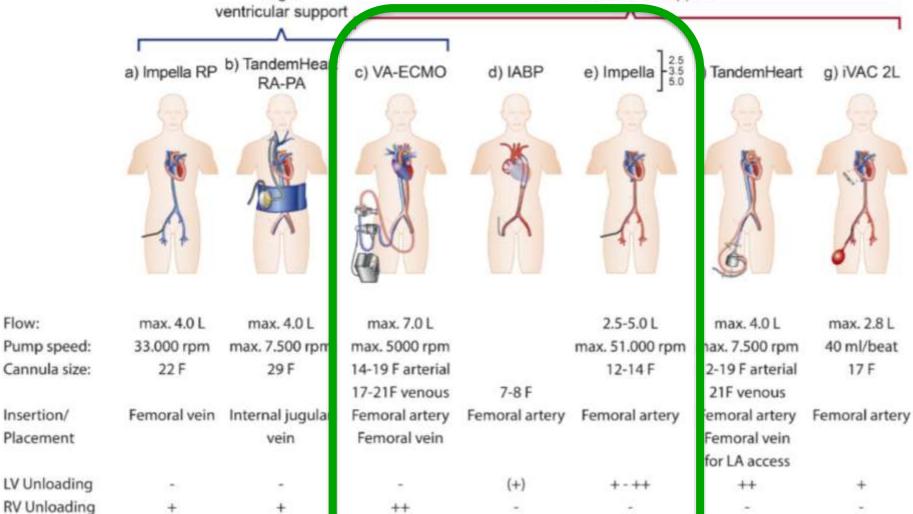
Management of cardiogenic shock complicating


myocardial infarction: an update 2019

Holger Thiele^{1,2}e, E. Magnus Ohman³, Suzanne de Waha-Thiele⁴, Uwe Zeymer⁵, and Steffen Desch^{1,2} Cardiogenic shock complicating infarction (STEMI or NSTEMI) Dage sout of learned Medicine Cording Plant Cornel Loging in Streets, of Loging Streets, 2, 1958 Loging, Corners, Yungay Streets, Science Plant Streets, Streets, Souther Str. 2018, Link, Topic Street of Same Plant Streets, Streets, Str. 2018, Link, Topic Street of Same Plant Streets, Surgician Str. 2018, Link, Topic Street of Same Plant Streets, Surgician Str. 2018, Link, Topic Street of Same Plant Streets, Surgician Str. 2018, Link, Topic Streets, Str. 2018, Streets, Str. 2018, Emergency invasive angiography (IB) Named 11 Secretar 2019, nature 17 April 2015 onlines come 8 this 2019 august 11 May 2019 with parties described a page 2019. Immediate echocardiography (IC) Cause of Left ventricular dysfunction (~80%) Right ventricular dysfunction (~7%) Mechanical complication (~13%) cardiogenic shock VSD (~4%) Mitral reg. (~7%) Free wall rupture (-2%) Heart Team Catheterization laboratory/OR Surgical/Intervent. Mitral repair/ Surgery (1C) closure (1C) replacement (IC) Pericardiocentesis Emergency PCI of culprit lesion (IB) Emergency CABG (if not amenable to PCI) (IB) Emergency PCI of culprit lesion in case of interventional treatment No routine PCI of non-IRA lesions (III B) Simultaneous CABG in case of surgical treatment (IB) goal 65 mmHg, optimal endorgan perfusion, Fluid challenge as first line therapy if no sign of overtifluid overload (1C) General measures: Mean blood pressure lactate clearance Invasive blood pressure monitoring (1C) Pulmonary artery catheter (IIb/C) Ventilatory support/O₁ according to blood gases (1C) Intravenous inotropes to increase cardiac output (IIb/C) Vasopressors (norepinephrine preferable over dopamine) in presence of persistent hypotension (IIb/B)

Ultrafiltration in refractory congestion not responding to diuretics (IIb/C)

Management of cardiogenic shock complicating myocardial infarction: an update 2019


Holger Thiele^{1,2}e, E. Magnus Ohman³, Suzanne de Waha-Thiele⁴, Uwe Zeymer⁵, and Steffen Desch^{1,2}

Flow:

Insertion/

Left ventricular support

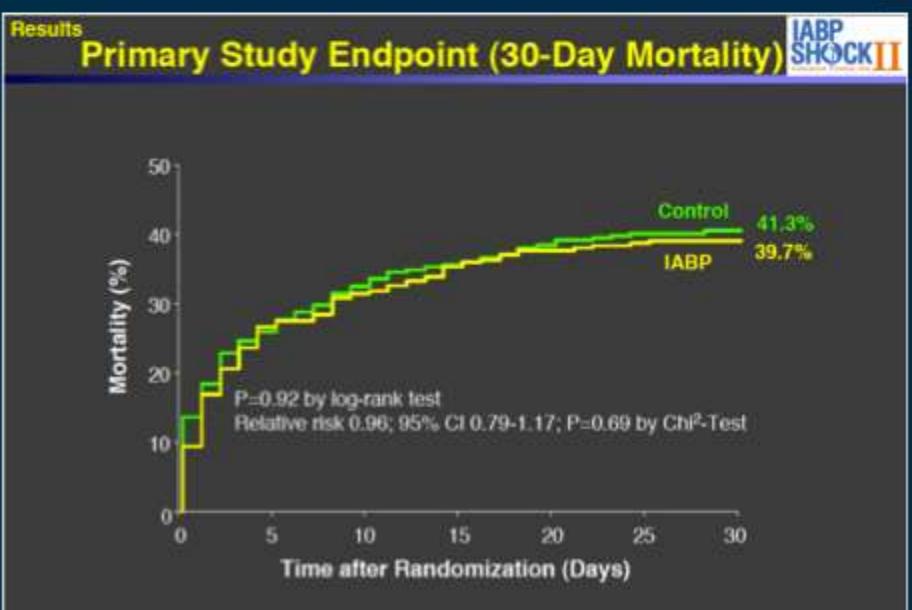


Table I
Characteristics of the patient populations.

Characteristic	IQ Database $(N = 15,259)$	cVAD Registry (N = 479)	p-value
Age, mean ± SD, y	63,51 ± 12,3	64,61 ± 12,10	0.061
Male sex	73%	76%	0.255
Diabetes	N/A	43%	N/A
Cerebrovascular disease	N/A	13%	N/A
Renal Insufficiency	N/A	24%	N/A
Peripheral vascular disease	N/A	15%	N/A
Pulmonary wedge catheter use	37%	43%	0.007
Impella 2.5	33%	57%	< 0.001
Impella CP	61%	42%	< 0.001
Impella 5.0	5.2%	1%	< 0.001
IABP use prior to Impella	20%	35%	< 0.001
Impella use pre-PCI	48%	46%	0.310
Duration of support, mean ± SD, days Outcomes	3.78 ± 4.8	1.51 ± 1.8	<0,001
Survival to explant	53%	73%	< 0.001
In-hospital survival	N/A	49%	N/A
30-day survival	N/A	40%	N/A

IABP indicated intra-aortic balloon pump; PCI, percutaneous coronary intervention; SD, standard deviation.

65% in patients with AMICS when an Impella was used. There was a sig-

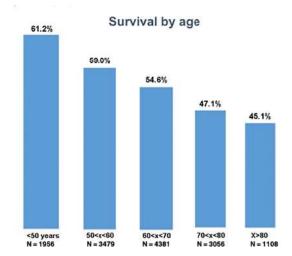


Figure 1. Survival at the time of explant by age. Data on age available in 13,980 patients.

Clinical Investigation

Analysis of outcomes for 15,259 US patients with acute myocardial infarction cardiogenic shock (AMICS) supported with the Impella device

William W. O'Neill, MD, FACC^a, Cindy Grines, MD, FACC^b, Theodore Schreiber, MD, FACC^c, Jeffrey Moses, MD, FACC^d, Brijeshwar Maini, MD, FACC^e, Simon R. Dixon, MBChB, FACC^f, E. Magnus Ohman, MD, FACC^{g,*}

American Heart Journal 202 (2018) 33-38

Survival rates from each site

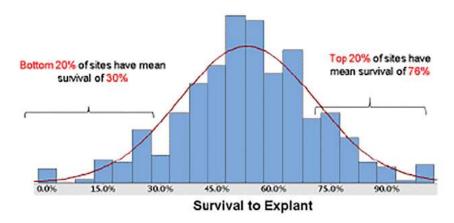


Figure 2. The distribution of survival across the 791 sites who implanted ≥4 Impella.

Circulation. 2019;139:1249-1258.

Circulation

......

Impella Support for Acute Myocardial Infarction Complicated by Cardiogenic Shock

Matched-Pair IABP-SHOCK II Trial 30-Day Mortality Analysis

Editorial, see p 1259

4 1 4 1 4 4

Benedikt Schrage, MD et al

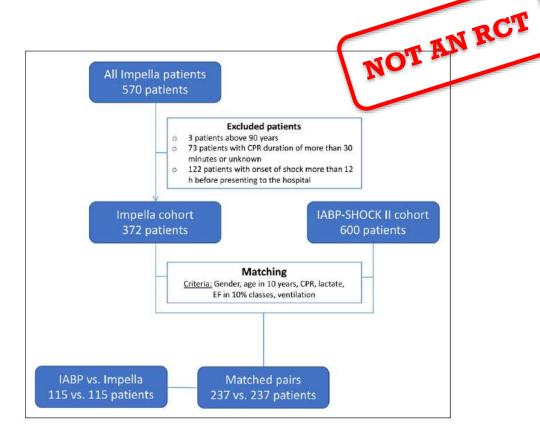
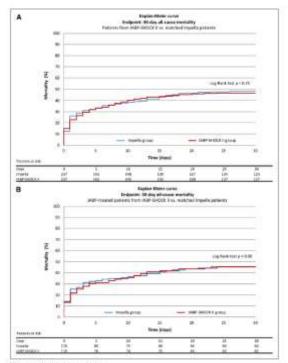
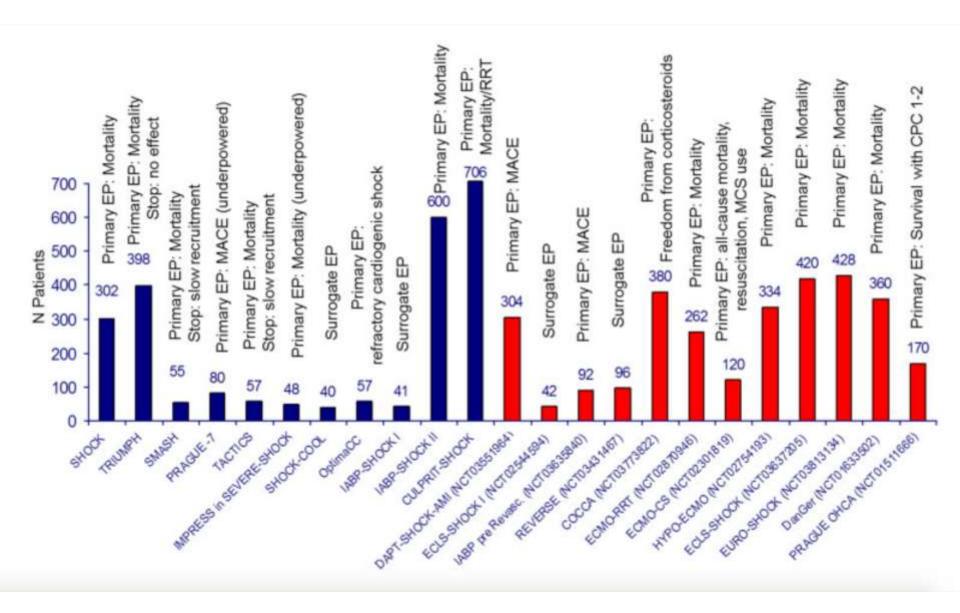



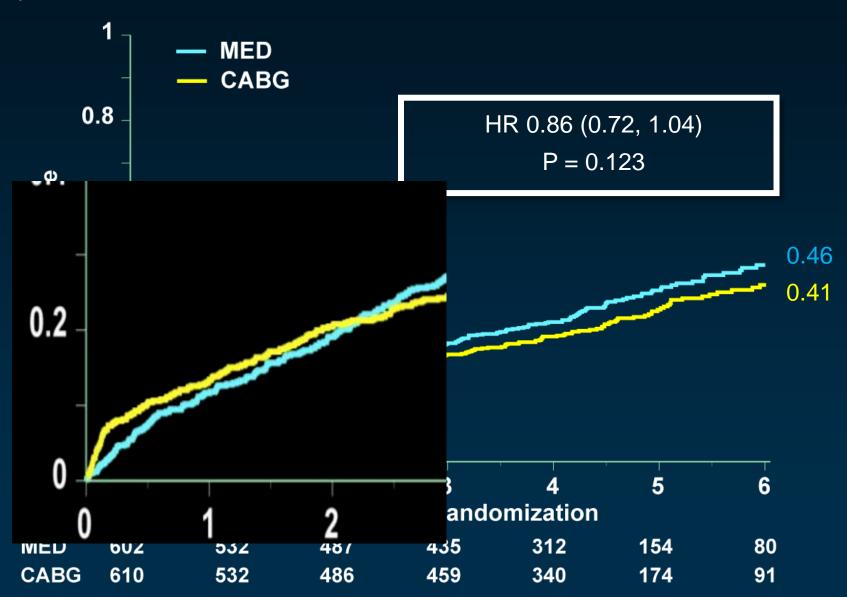
Table 3. Clinical Outcome of the Matched Patients


	Impella vs IABP-SHOCK II trial Patients				vs IABP-Treated Patients From the IABP-SHOCE II Trial		
	Impella Group (n=237)	Control (n=237)	P Value	Impella Group (n=155)	Control (n=115)	P Value	
30-day all-cause mortality	115 (48.5)	110 (46.4)	0.64	53 (46.1)	57 (45.2)	0.90	
Reinfarction in hospital	7 (3.5)	6 (2.5)	0.56	4 (4.0)	4(3.5)	0.71	
Start thrombosis in hospital	1 (0.6)	3 (1.3)	0.32	90.00	2 (1.7)	0.22	
Stroke in hospital	6 (3.5)	6 (2.5)	0.76	2 (2.3)	1 (0.9)	0.56	
Perpheral achienic complications requiring intervention in hospital	23 (9.8)	9 (3.8)	0.01	11 (9,6)	4 (3.5)	0.05	
Moderate bleeding in hospital	48 (20.3)	40 (16.9)	0.32	22 (19.1)	24 (20.9)	6.72	
Life-threatening or severe bleeding in hospital	20 (8.5)	7 (3.0)	<0.01	12 (10.4)	2 (1.7)	<0.01	
Sepsis in hospital	73 (15.3)	46 (19.4)	<0.01	39 (38.2)	20 (17.4)	<0.01	

Values are presented as frequencies (percentages) or median (interquantile range). W&P-SHOCK II indicates instanortic Balloon Pump in Cardiogenic Shock.

n-Maler surves for the primary and point.

restricted was sood to accord the periody and point of 20-day of cases restrictly. (As in this analysis, there were no regardicant differences to larguage than their and their southern control group from the ART-VECT. It has feen best. (B) Lambag the analysis to WRF-instant potents are quantities that out though the masks. ART instances their accords tables a period, and analysis ART-VECT. It is not controlled to the controlled to the analysis of the analysi



Can PCI save lives in patients with CHRONIC severe LV dysfunction?

(in stable CAD)

All-Cause Mortality

Coronary-Artery Bypass Surgery in Patients with Ischemic Cardiomyopathy

Eric J. Velazquez, M.D., Kerry L. Lee, Ph.D., Robert H. Jones, M.D., Hussein R. Al-Khalidi, Ph.D., James A. Hill, M.D., Julio A. Panza, M.D., Robert E. Michler, M.D., Robert O. Bonow, M.D., Torsten Doenst, M.D., Mark C. Petrie, M.D., Jae K. Oh, M.D., Lilin She, Ph.D., Vanessa L. Moore, A.A.S., Patrice Desvigne-Nickens, M.D., George Sopko, M.D., M.P.H., and Jean L. Rouleau, M.D., for the STICHES Investigators*

NEJM 3rd April 2016

EXCEL: Periprocedural Events

	PCI (n=948)	CABG (n=957)	RR [95%CI]	P-value
30-Day peri-procedural MAE, any	8.1%	23.0%	0.35 [0.28, 0.45]	<0.001
- Death*	0.9%	1.0%	0.91 [0.30	0.83
- Stroke*	0.6%	1.3%	- 0%	0.16
 - Myocardial infarction* - Ischemia-driven revascularizati - TIMI major/mipority - Transi - Major a 	3 000	- 5	7 ± 5/6	0.02
- Ischemia-driven revascularizer	- al M	125	[v.18, 1.22]	0.11
- TIMI major/mine	CEI	J.3%	0.42 [0.28, 0.61]	<0.001
- Transi	4.0%	17.0%	0.24 [0.17, 0.33]	<0.001
- Major a	2.0%	15.8%	0.13 [0.08, 0.20]	<0.001
- Surgery - Larologic procedure	1.1%	4.0%	0.27 [0.13, 0.53]	<0.001
- Renal failure [†]	0.5%	2.4%	0.22 [0.08, 0.57]	<0.001
- Sternal wound dehiscence	0.0%	1.9%	0.03 [0.00, 0.45]	<0.001
- Infection requiring antibiotics	2.3%	13.6%	0.17 [0.11, 0.27]	<0.001
- Prolonged intubation (>48 hours)	0.4%	2.9%	0.14 [0.05, 0.41]	<0.001
- Post-pericardiotomy syndrome	0.0%	0.4%	0.11 [0.01, 2.08]	0.12

^{*}Adjudicated events; others are site-reported. **SVT requiring cardioversion, VT or VF requiring treatment, or bradyarrhythmia requiring temporary or permanent pacemaker. †Serum creatinine increased by ≥0.5 mg/dL from baseline or need for dialysis.

European Heart Journal (2014) 35, 3004-3012. doi:10.1093/eurheart/ehu303

CLINICAL RESEARCH

Interventional cardiology

Impact of left ventricular function in relation to procedural outcomes following percutaneous coronary intervention: insights from the British Cardiovascular Intervention Society

Mamas A. Mamas ^{1,2†}, Simon G. Anderson ^{1,2†}, Peter D. O'Kane³, Bernard Keavney ^{1,2}, James Nolan⁴, Keith G. Oldroyd⁵, Divaka Perera⁶, Simon Redwood⁶, Azfar Zaman⁷, Peter F. Ludman⁸, and Mark A. de Belder⁹, on behalf of the British Cardiovascular Intervention Society and the National Institute for Cardiovascular Outcomes Research

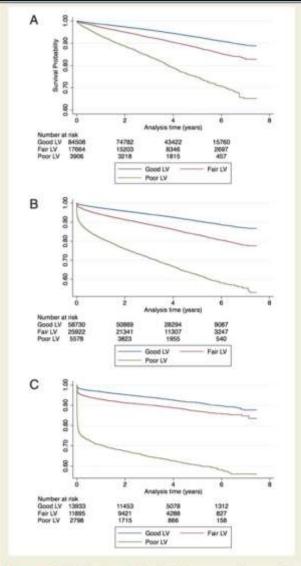


Figure 3 (A) Unadjusted Kaplan—Meier survival curves for patients undergoing percutaneous coronary intervention in the elective setting stratified by left ventricular function. (B) Unadjusted Kaplan—Meier survival curves for patients undergoing percutaneous coronary intervention for non-ST elevation myocardial infarction stratified by left ventricular function. (C) Unadjusted Kaplan—Meier survival curves for patients undergoing percutaneous coronary intervention for ST elevation myocardial infarction stratified by left ventricular function.

Guidelines for Revascularisation (LVEF<35%)

Recommendations	Classa	Level ^b	Ref ^c
CABG is recommended for patients with significant LM stenosis and LM equivalent with proximal stenosis of both LAD and LCx arteries.	-	G	9 2 9
CABG is recommended for patients with significant LAD artery stenosis and multivessel disease to reduce death and hospitalization for cardiovascular causes.	-	В	112,288
Myocardial revascularization should be considered in the presence of viable myocardium.	lla	В	55
CABG with surgical ventricular restoration may be considered in patients with scarred LAD territory, especially if a post-operative LVESV index < 70 mL/m ² can be predictably achieved.	IIb	В	291–295
PCI may be considered if anatomy is suitable, in the presence of viable myocardium, and surgery is not indicated.	IIb	С	

2014

REVASCULARISATION FOR ISCHAEMIC VENTRICULAR DYSFUNCTION

JACC Heart Failure

June 2017 Volume 6, No. 6 517-26

A Journal of the American College of Cardiology

Percutaneous Revascularization for Ischemic Ventricular Dysfunction: Rationale and Design of the REVIVED-BCIS2 Trial

Percutaneous Coronary Intervention for Ischemic Cardiomyopathy

Divaka Perera, MA, MD,^a Tim Clayton, MSc,^b Mark C. Petrie, MBChB, MD,^c John P. Greenwood, MBChB, PhD,^d Peter D. O'Kane, MBBS, MD,^e Richard Evans, BA,^b Mark Sculpher, MA, PhD,^f Theresa Mcdonagh, MBBS, MD,^g Anthony Gershlick, MBBS,^h Mark de Belder, MA, MD,ⁱ Simon Redwood, MBBS, MD,^a Gerald Carr-White, MBBS, PhD,^a Michael Marber, MBBS, PhD,^a on behalf of the REVIVED investigators

Study Design

Hypothesis:

Compared to optimal medical therapy alone, PCI improves event free survival in patients with impaired LV function and myocardial viability

Primary endpoint:

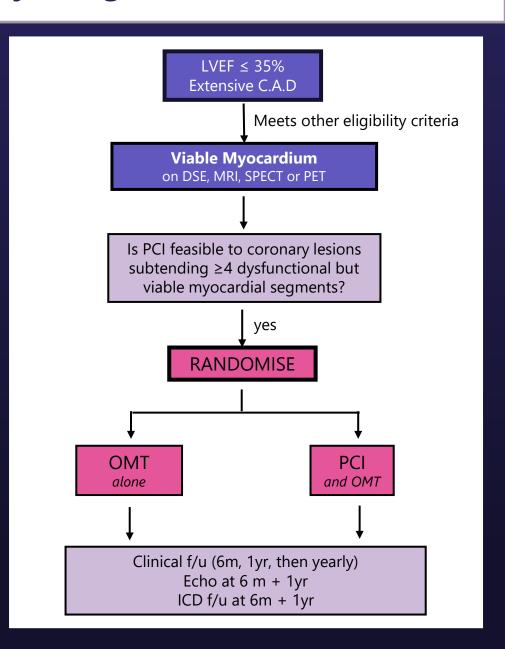
All cause mortality or hospitalisation due to heart failure

Sample size: 700

Time to event analysis, minimum f/u: 2 yrs
Predicted event rate with OMT= 36% at 2 years
87% power to show 25% RR with PCI

Study Design

Inclusion Criteria:


•LVEF≤35%

Extensive CAD

•Viability in ≥4 dysfunctional segments that can be revascularised by PCI

Exclusion Criteria:

•AMI < 4 weeks previously

Revascularisation in LV Dysfunction

Surgical revascularisation improves mortality and morbidity ... but at high procedure will will results follow-up (min. 2 years) will results ... ESC 2022?

Results ... ESC 2022?

With PCI, segmental viability (+/- ischaemia) targeted complete revascularisation is most likely to deliver benefit (relatively evidence free zone)