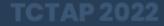

When and How to Use Intracoronary Imaging in My Cath Lab

Do-Yoon Kang, MD


Clinical Assistant Professor, University of Ulsan College of Medicine, Heart Institute, Asan Medical Center, Seoul, Korea

Disclosure

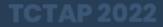
• I, Do-Yoon Kang, have nothing to disclose.

When Do I Use the Intracoronary Imaging ?

When to Use Intracoronary Imaging?

• To Guide PCI

Asan Medical Center – Imaging & Physiology Centered Cath Lab

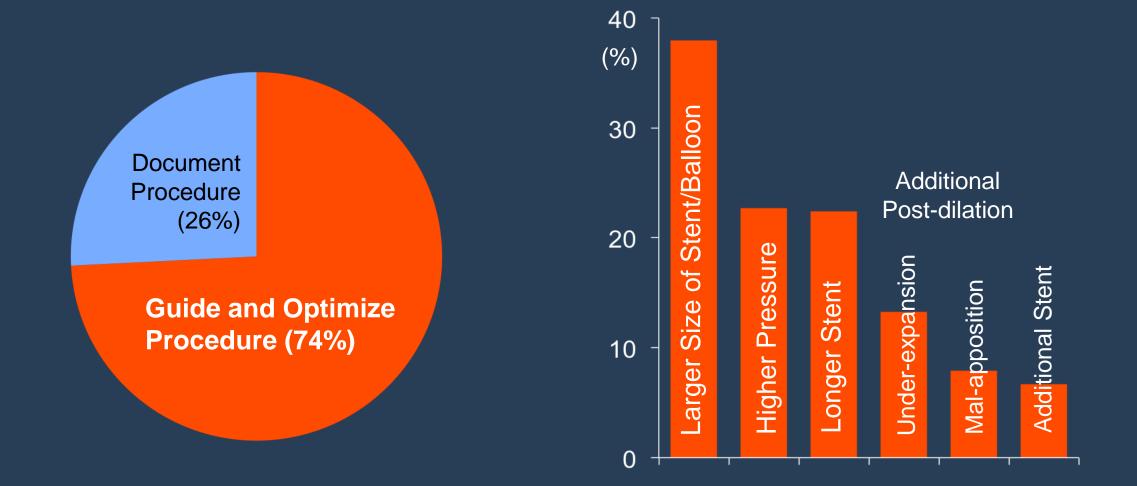

- 4 Cath Labs for Coronary Procedure
- 6,075 CAG
- 2,564 PCI
- 2,758 Intravascular Imaging
- 1,765 FFR

Intracoronary Imaging Penetration Rate for PCI Guidance in AMC

> 95%

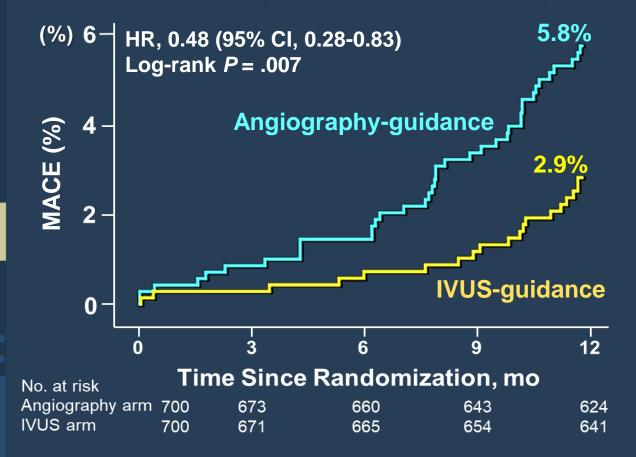
Why Do We Use Intracoronary Imaging in Almost PCI Cases?

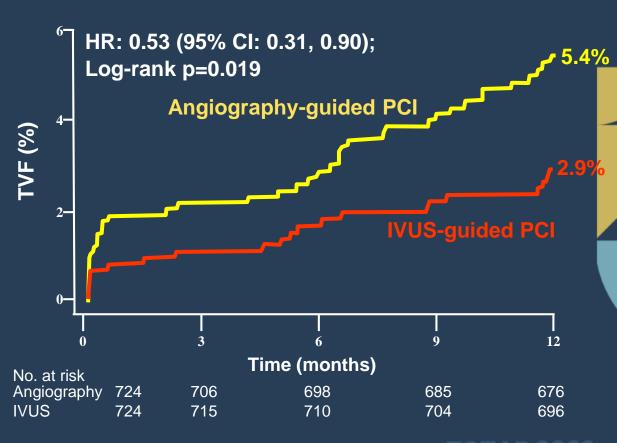
2 Fundamental Questions For Interventional Cardiologists when Performing a PCI,


 Is A Lesion Significant, Ischemia Producing and Should It be Treated ? *Physiology Answers*

2. Has the PCI been Optimized ? *Imaging Guides*

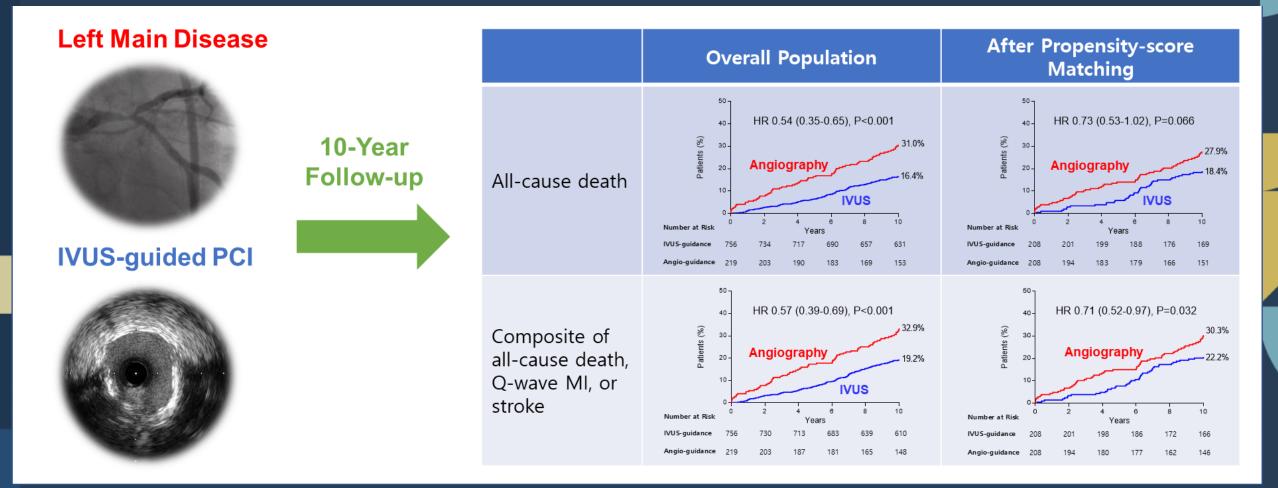
How Intravascular Imaging Changed Procedure?


ADAPT-DES: Procedural Changes After IVUS in 74%


Witzenbichler et al. Circulation 2014;129:463-70

IVUS Improved Clinical Outcomes in Large RCTs

IVUS-XPL (Long lesions) MACE (CD+TL-MI+ID-TLR)


ULTIMATE (All-comer) TVF (CD+TV-MI+CD-TVR)

Hong SJ, Hong MK et al. JAMA 2015;314:2155-63.

Zhang J et al. J Am Coll Cardiol 2018;72:3126-27.

IVUS Use was Associated with Better 10-yr Outcomes after LM PCI MAIN-COMPARE Registry

Kang DY et al, Circ Cardiovasc Interv. 2021.

2021 ACC/AHA PCI Guideline for Intracoronary Imaging

- In patients undergoing coronary stent implantation, IVUS can be useful for procedural guidance, particularly in cases of left main or complex coronary artery stenting, to reduce ischemic events
- In patients undergoing coronary stent implantation, OCT is a reasonable alternative to IVUS for procedural guidance, except in ostial left main disease
- In patients with stent failure, IVUS or OCT is reasonable to determine the mechanism of stent failure

LOE

Lawton JS et al. JACC 2021.

lla B

COR

lla

lla

Why Do We Use Intracoronary Imaging in Almost PCI Cases?

Because We Believe that

the Imaging-guidance Improves the Patients Outcome (especially in the Complex PCI)

When to Use Intracoronary Imaging?

- To Guide PCI (in Almost Cases)
- To Find the Cause of ACS without Clear Culprit (Sometimes)
- To Find Vulnerable Plaque (Research-Based)

Intracoronary Imaging to Find Vulnerable Plaque?

Significant (DS >50%) Coronary Stenosis with <u>FFR > 0.80</u> and with <u>Two</u> of the following

- 2. IVUS Plaque Burden >70%
- **3.** TCFA by OCT or VH-IVUS

4. Lipid-Rich Plaque on NIRS (_{max}LCBI_{4mm}>315)

PCI+OMT N=800 N=800

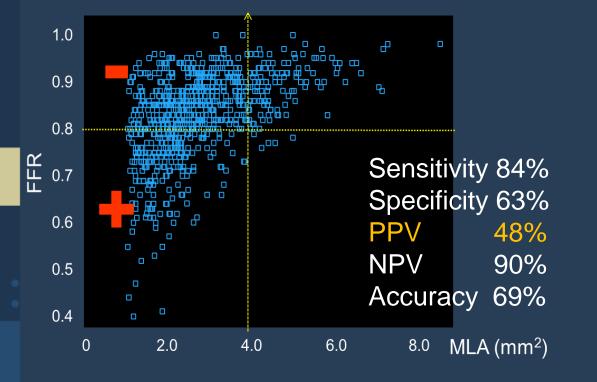
Primary endpoint *at 2 years*: CV death, MI, Hospitalization d/t unstable angina

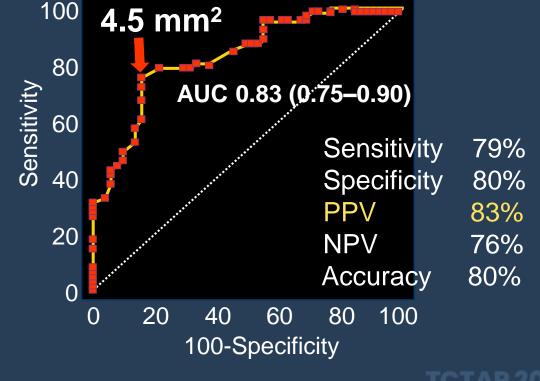
OCT sub-study/ NIRS sub-study, (300 patients in each arm at 2 years)

Enrollment Completed Sep 2021

> PI: Seung-Jung Park ,MD

https://clinicaltrials.gov/ct2/show/NCT02316886

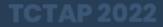

ГСТАР 2022


Intracoronary Imaging Use to Find Functionally Significant (FFR ≤0.80) Lesion ?

No !

IVUS MLA - FFR in non-LM disease

IVUS MLA - FFR in LM disease

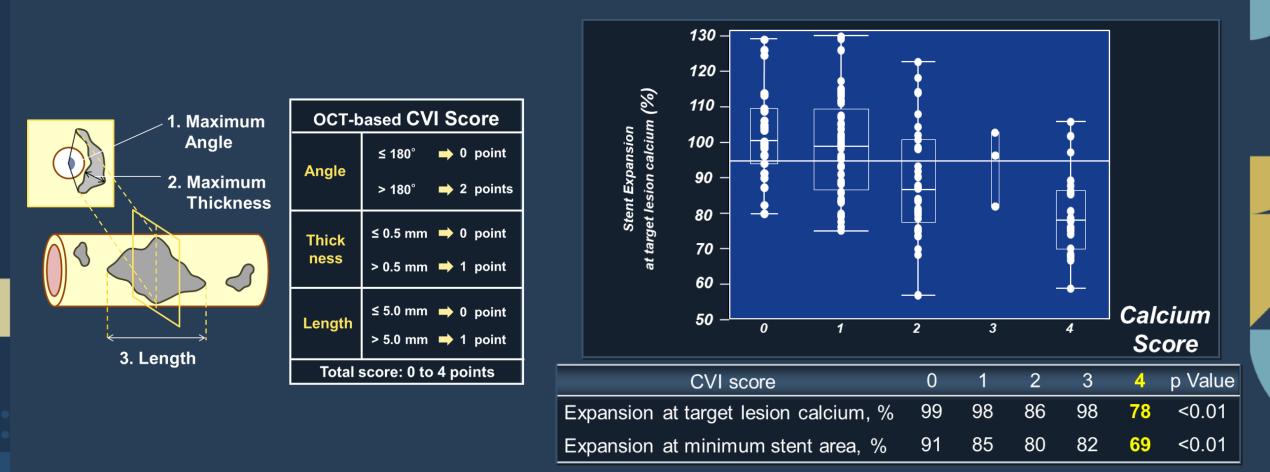


Park SJ et al. JACC Interv, 2014;7(8):868-874

Kang SJ et al. Am J Cardiol 2012;109:947-53

How Do I Use Intracoronary Imaging for PCI Guidance?

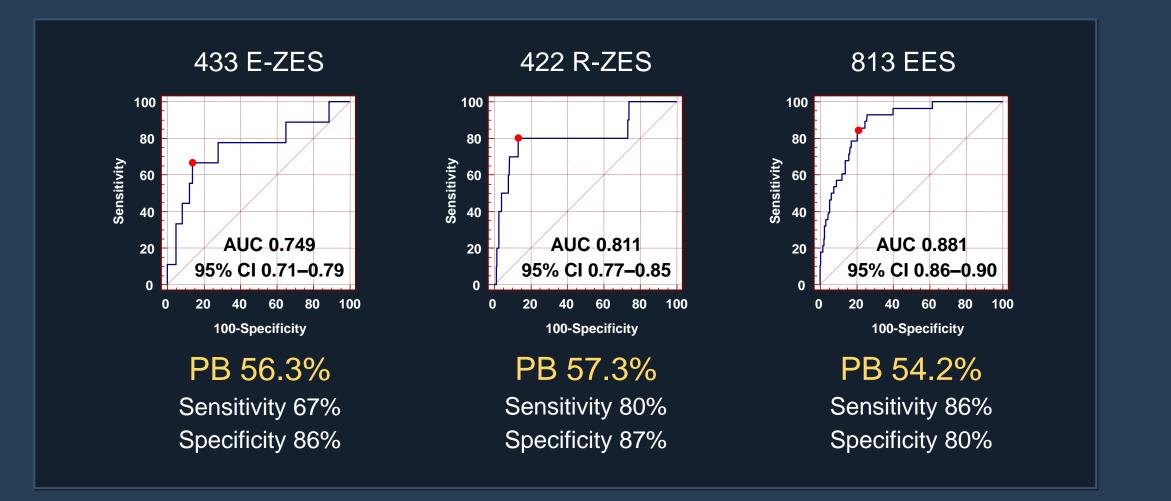
Role of Intravascular Imaging for PCI Guidance?


Optimize Acute Stent Results

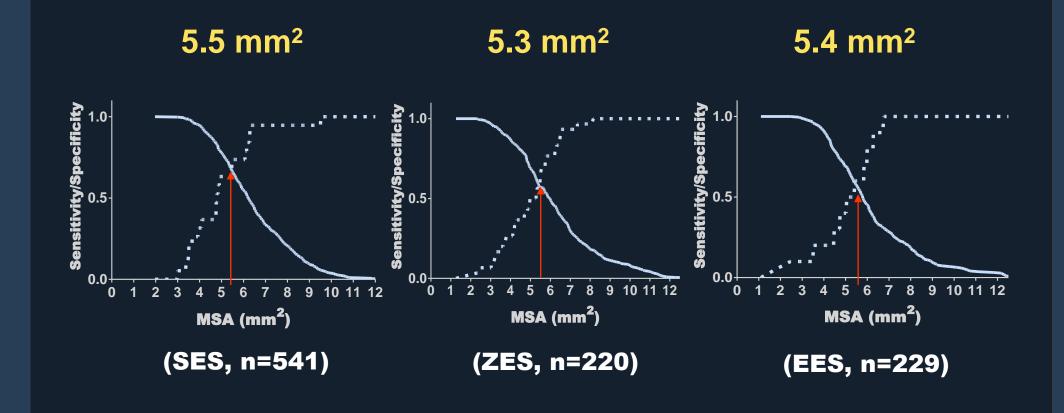
Intracoronary Imaging for Optimizing PCI

- Assess the plaque characteristics & Perform adequate pre-modification
- Confirm the result of the plaque modification in calcified lesion

Calcium Evaluation by Imaging Predicted Stent Expansion

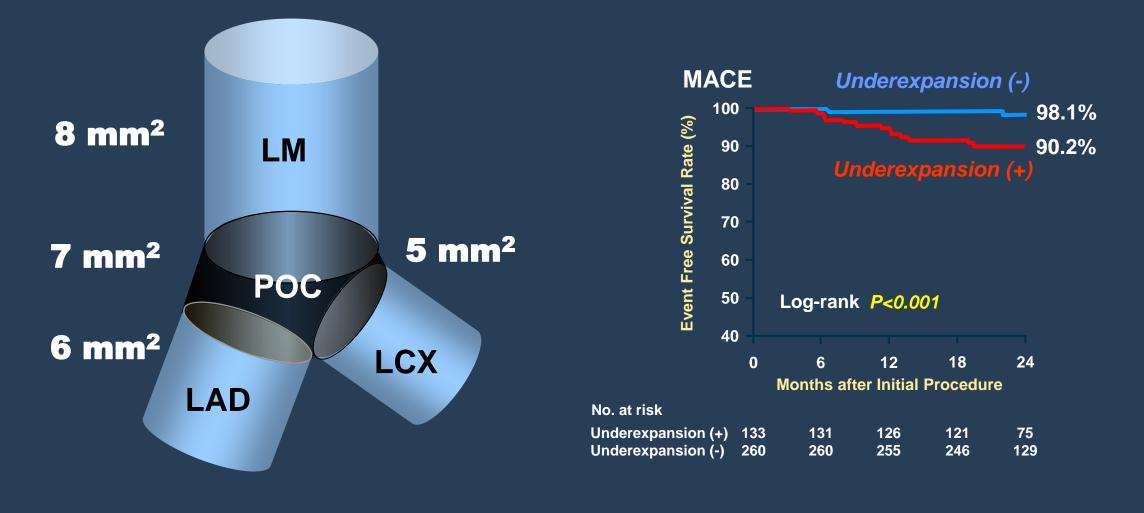

Fujino A et al. EuroIntervention. 2018;13:e2182-9.

ГСТАР 2022


Intracoronary Imaging for Optimizing PCI

- Assess the plaque characteristics & Perform adequate pre-modification
- Confirm the result of the plaque modification in calcified lesion
- Select the clean landing zones (stent length), larger stent (lumen / vessel size)

The Best Cut-off of Edge Restenosis Plaque Burden <55%


Effective Stent Area (> 5.0 mm²), Can Make Lower TLR <2%

TCTAP 2022

Song HG et al, Catheterization and Cardiovascular Interventions. 2012.

Stent Area after LM Bifurcation PCI : Bigger the Better Rule of 5, 6, 7, 8

Kang SJ et al. Circ Cardiovasc Interv 2011;4:562-9.

ТСТАР 2022

Intracoronary Imaging for Optimizing PCI

- Assess the plaque characteristics & Perform adequate pre-modification
- Confirm the result of the plaque modification in calcified lesion
- Select the clean landing zones (stent length), larger stent (lumen / vessel size)
- Select the larger-sized noncompliant balloon for post-dilation

Imaging-Guided Complex PCI in IRIS-DES Registry

- From IRIS-DES Registry (NCT01186133) Between 2008 and 2017.
- A total 9525 patients with single complex coronary lesions were enrolled in this analysis.
- Complex coronary lesions were included
 - 1. LMCA
 - 2. Bifurcation
 - 3. Diffuse lesion (>30mm)
 - 4. Severely calcified lesion
 - 5. In-stent restenosis

• Primary outcome : composite of cardiac death, target vessel MI and TVR

Imaging-Guided PSP

Under the Intracoronary Imaging Guidance

Inspection of lesion characteristic by IVUS

Calcification Plaque burden and configuration Opening of side branch

Lesion pre-modification for

stent delivery and expansion:

High pressure balloon

Cutting or scoring balloon

Rota-ablation

Selection of stent <u>size a</u>nd length by IVUS

Stent landing zone configuration Lesion length Reference vessel size

Surveillance of stent

outcomes

Stent apposition Stent area Procedural complications

Post-dilation

Pre-dilation

S Stent Sizing

Full lesion coverage Adequate stent size Complete stent apposition Sufficient stent area No geographic miss No procedural complications

Park HB, Ahn JM, Park SJ et al. JACC Cardiovasc Interv. 2020;13:1403-1413.

ТСТАР 2022

Imaging-Guided PSP, What Is Different?

Stent Number

Stent Length (mm)

Imaging-Guided Complex PCI – Better Clinical Outcome

	Crude cumulative incidence (%)		Multivariate analysis		PS matching		IPTW		
	iPSP	No iPSP	Ρ	HR (95% CI)	Ρ	HR (95% CI)	Ρ	HR (95% CI)	Р
Primary outcome	5.7	8.0	0.001	0.74 (0.61-0.90)	0.003	0.71 (0.56-0.90)	0.005	0.71 (0.63-0.81)	<0.001
Cardiac death	2.3	3.6	0.003	0.73 (0.53-0.99)	0.047	0.78 (0.53-1.15)	0.20	0.62 (0.51-0.75)	0.003
Target vessel MI	0.2	0.5	0.19	0.68 (0.30-1.55)	0.36	0.78 (0.29-2.09)	0.62	0.65 (0.38-1.10)	0.10
TVR	3.4	4.6	0.02	0.73 (0.57-0.94)	0.02	0.68 (0.50-0.92)	0.01	0.74 (0.63-0.87)	<0.001

Post-dilation was the Most Significant Event Predictor Among 3 Components of iPSP

	Univariate analy	sis	Multivariate analysis*		
	HR (95% CI)	P value	HR (95% CI)	P value	
Pre-dilation	0.89 (0.69-1.15)	0.374	0.84 (0.64-1.11)	0.216	
Stent-sizing	0.79 (0.67-0.93)	0.004	0.89 (0.74-1.07)	0.219	
Post-dilation	0.79 (0.67-0.94)	0.006	0.80 (0.67-0.96)	0.016	

Post-Balloon Size was Larger With IVUS

Pre-dilation	IVUS	Post-dilation	No. of patients (%)	Stent diameter (mm)	Post balloon size (mm)	Annualized event rate	Adjusted HR (95% CI)	P value
No	No	Yes	129 (1.4)	3.04 ± 0.41	3.10 ± 0.81	3.04 %	0.81 (0.35-1.85)	0.613
				Δ+0.	.05 (P=0.550)			
Yes	No	Yes	1719 (18.0)	3.08 ± 0.38	3.12 ± 0.86	3.07 %	0.80 (0.53-1.21)	0.297
	Δ+0.04 (P=0.104)							
No	Yes	Yes	309 (3.2)	3.43 ± 0.41	3.79 ± 0.70	2.04%	0.72 (0.39-1.35)	0.306
Δ +0.35 (P<0.001)								
Yes	Yes	Yes	3374 (35.4)	3.26 ± 0.39	3.58 ± 0.60	1.98%	0.63 (0.42-0.93)	0.022
	Δ +0.32 (P<0.001)							

Intracoronary Imaging for Optimizing PCI

- Assess the plaque characteristics & Perform adequate pre-modification
- Confirm the result of the plaque modification in calcified lesion
- Select the clean landing zones (stent length), larger stent (lumen / vessel size)
- Select the larger-sized noncompliant balloon for post-dilation
- Post-stenting surveillance for stent expansion & edge problem

With Intravascular Imaging, I Can Implant Bigger Stent, With Higher Pressure Post-dilation,

Safely.

Small Details Make a Big Difference !

He is the Keyman For Successful Imaging-guided PCI !

C WINNING

AVIG

ш

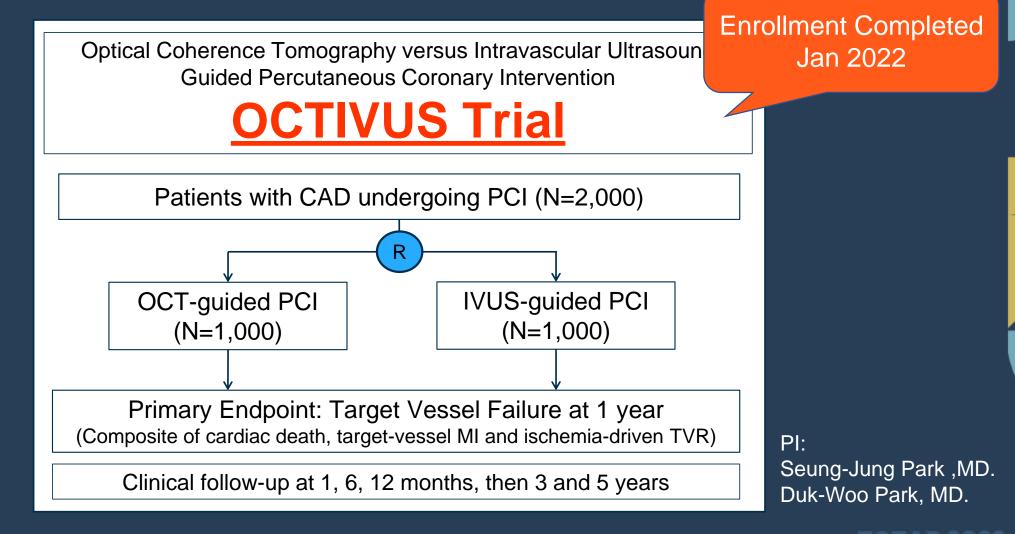
The Key for Successful, Fluent Imaging-Guided PCI?

Education of Cath Lab Professionals

Which Imaging Device Do I Use ?

	ОСТ	IVUS
Wave source	Near-infrared light	Ultrasound
Axial resolution, µm	1-2	38-46
Penetration depth in soft tissue, mm	1-2	>5
Blood clearance	Needs Contrast	Not required
Plaque burden at lesion	-	+
Aorto-ostial visualization	-	+
Cross-sectional calcium evaluation	Thickness, angle	Angle only
Lipidic plaque evaluation	Lipidic plaque, cap thickness	Attenuated plaque

Maehara A et al., J Am Coll Cardiol Img 2017;10:1487-503 Koganti S et al., Interv Cardiol 2016;11:11-16

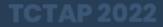

OCT vs. IVUS in My Daily Practice

	ОСТ	IVUS
LM disease		Better
Ostial lesion		Better
Bifurcation	Delicate	Convenient
Long lesion	It saves time	1 mm/s pullback also saves time
СТО		Better
In-stent restenosis	Better	
Renal dysfunction or CHF		Better

TCTAP 2022

OCTIVUS Trial

Pragmatic RCT Comparing OCT vs. IVUS-guided PCI



Kang DY et al. Am Heart J. 2020 Oct;228:72-80.

Conclusion

- Intracoronary imaging–guided PCI is the evidence-based approach for the best clinical outcome.
- Imaging enables safe and effective PCI with larger stent & balloon, resulting in a larger final stent area.
- Team education is important for procedural fluency in routine use of imaging.
- Practice makes perfect. Routine use of intracoronary imaging would make perfect PCI team.

Thank you for your attention !

111