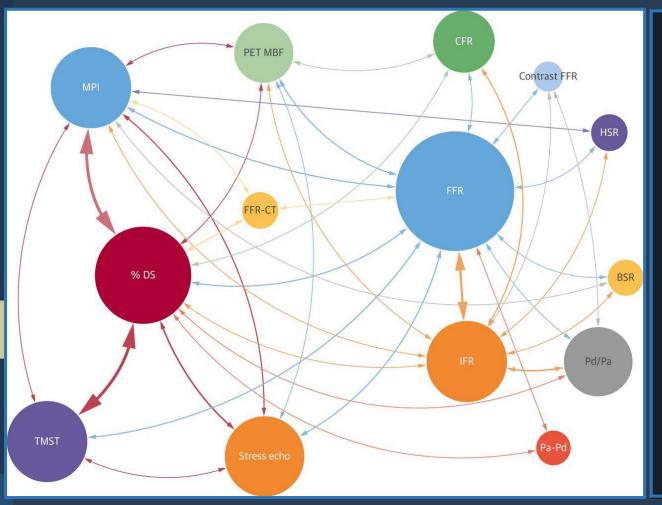
The Basics of Coronary Physiology Measurement: FFR, iFR and other NHPRs

Jung-Min Ahn, MD


Departement of Cardiology, Asan Medical Center, Seoul, Korea

TCTAP 2022

Disclosure

• I, Jung-Min Ahn, have NO conflict of interest related to this presentation.

Many Indices

Morton J. Kern et al. JACC 2017;70(17):2124-7

- Non-Invasive Functional Study
 - Treadmill test
 - Stress echocardiography
 - Myocardial perfusion imaging
 - SPECT
 - MRI, CT
- Fractional Flow Reserve (FFR)
- Non-Hyperemic Pressure Ratio (NHPR)
 - iFR
 - Resting Pd/Pa
 - dPR
 - RFR

• During **Stress**, Decreased Coronary Blood Flow To Induce

Myocardial Perfusion Imaging

Myocardial Perfusion Abnormality

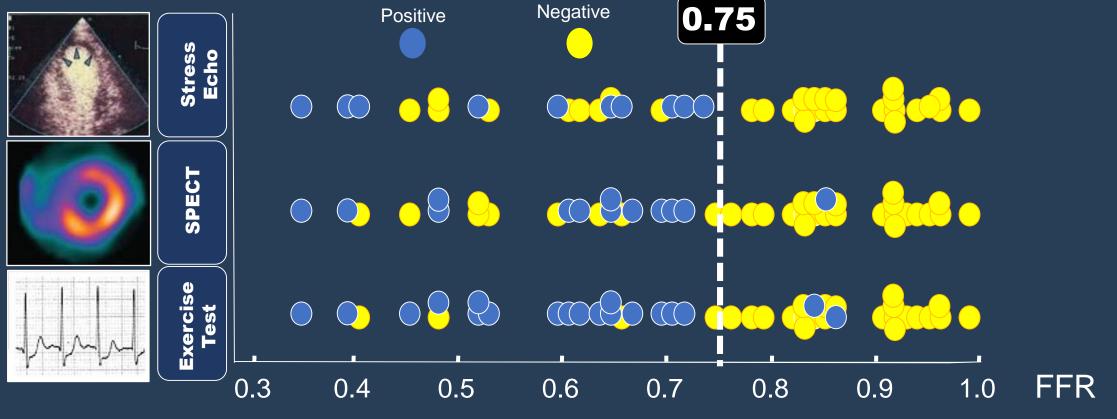
Stress Echo

Contractile Abnormality

Direct Evidence of Ischemia

Treadmill Test

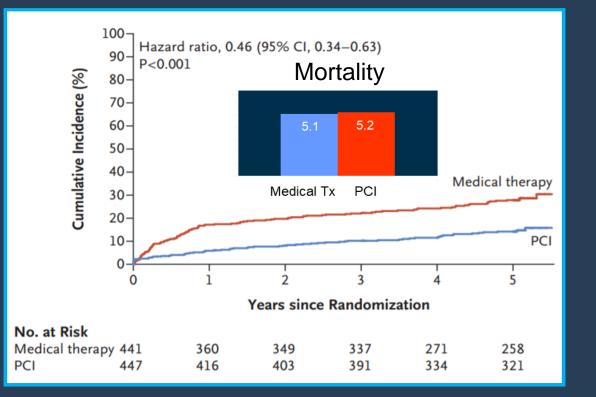
Electrical Abnormality



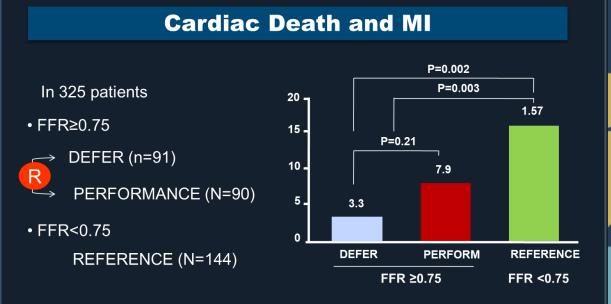
Ischemia Test in Cath Lab ?

FFR as A Non-Invasive Functional Study In Cath Lab

Comparison with 3 Non-Invasive Functional Studies


- N = 45 patients
- Sensitivity 88%, Specificity 100%, PPV 100%, NPV 88%

TCTAP 2022


Current Cut-off Value of FFR: 0.80

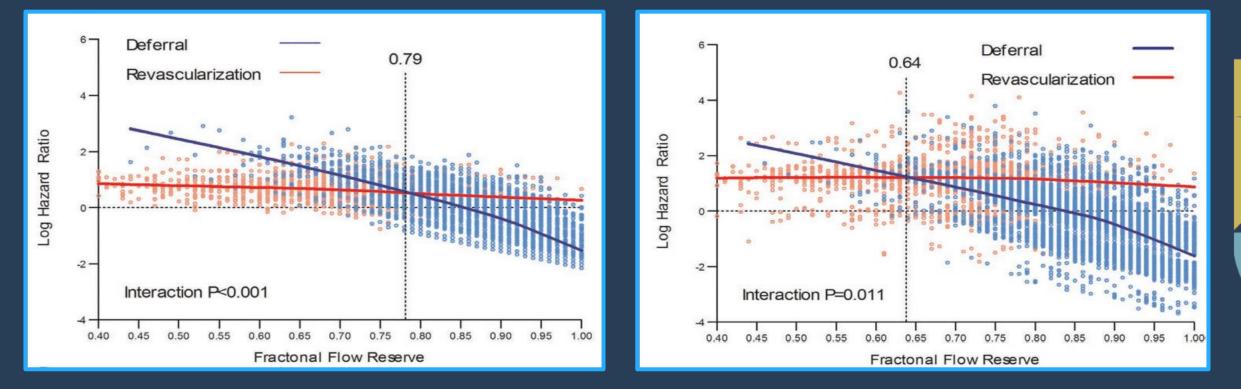
$0 \longleftarrow 0.75 \leftrightarrow 0.80 \longleftarrow 1.0$						
Significant		grey zone	Non-significant			
Author	Number	Stress Test	g/DSE	BCV	Accuracy	
Pijls et al.	60	X-ECG		0.74	97	
DeBruyne et al.	60	X-ECG/SPECT		0.72	85	
Pijls et al.	45	X-ECG/SPECT/pacine		0.75	93	
Bartunek et al.	37	DSE		0.68	90	
Abe et al.	46	SPECT		0.75	91	
Chamuleau et al.	127	SPECT		0.74	77	
Caymaz et al.	40	SPECT		0.76	95	
Jimenez-Navarro et al.	21	DSE		0.75	90	
Usui et al.	167	SPECT		0.75	79	
Yanagisawa et al.	167	SPECT		0.75	76	
Meuwissen et al.	151	SPECT		0.74	85	
DeBruyne et al.	57	MIBI-SPECT post-MI		0.78	85	
Samady et al.	48	MIBI-SPECT post-MI		0.78	85	
Ahn JM et al.(2011)	151	SPECT		0.77	89	

FFR ≤ 0.80: Stenting Justified FAME 2

FFR > 0.80: Defer DEFER

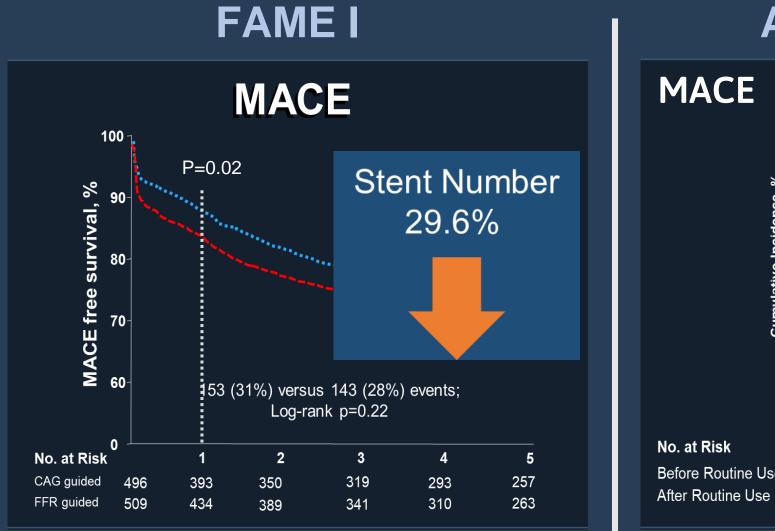
• The risk of CD or MI related to this stenosis is <1%/year and not decreased by stenting.

De Bruyne, et al. New Engl J Med 2014;371:1208-17.

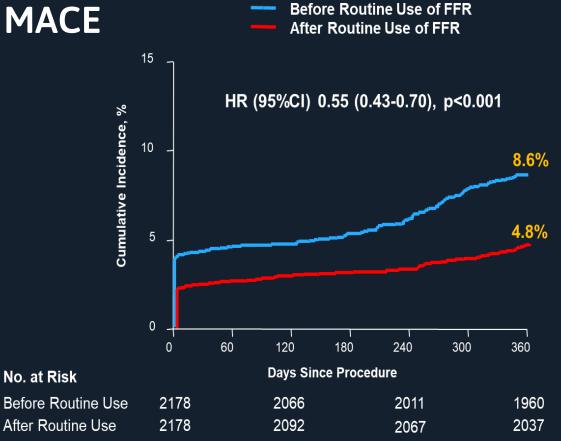

J Am Coll Cardiol 2007;49:2105–11.

Outcome Derived Revascularization Threshold

FFR: Clinical Index To Decide Revascularization

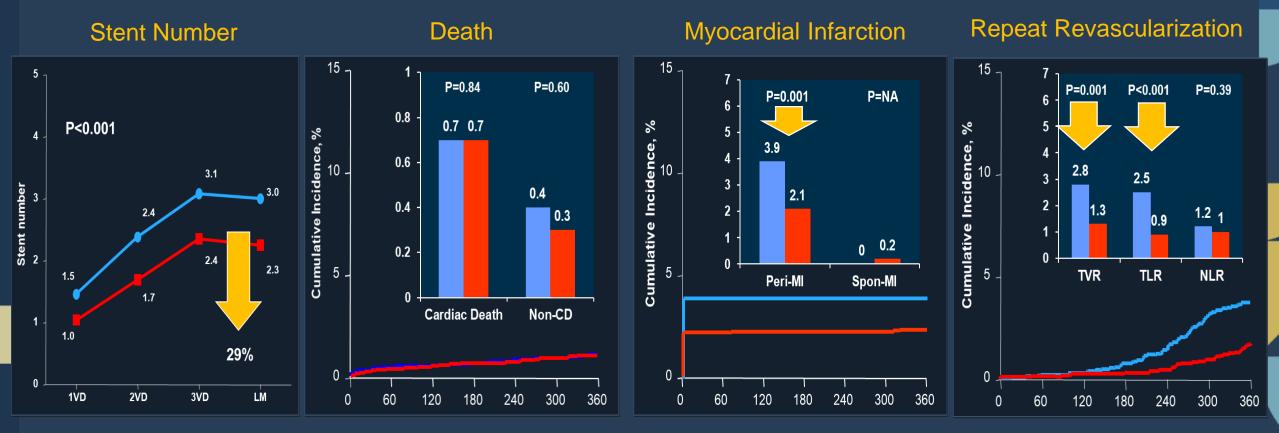

Cardiac Death, MI, and TVR

Cardiac Death, and MI


Ahn JM, Park SJ et al. Circulation 2017 Jun 6;135(23):2241-2251

FFR Guided PCI

van Nunen LX, Zimmermann FM et al. LANCET 2015;386(10006):1853-60

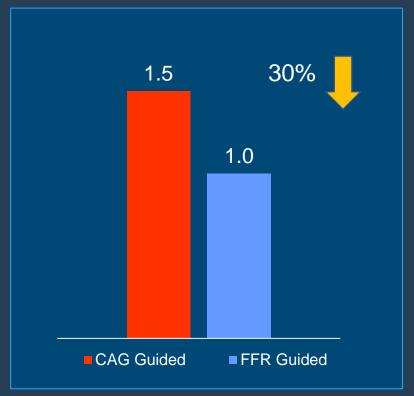

Asan PCI Registry

Park SJ, Ahn JM et al. Eur Heart J. 2013 Nov;34(43):3353-61

Asan PCI Registry

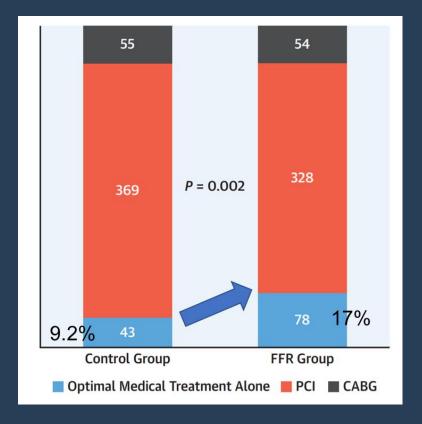
Before Routine UseAfter Routine Use

- The benefit of FFR guided PCI is primarily due to
 - 1) The reduced number of stents per patient
 - 2) The subsequent decreased risk of peri-procedural MI and repeat revascularization
 - 3) Favorable outcome with less stenting

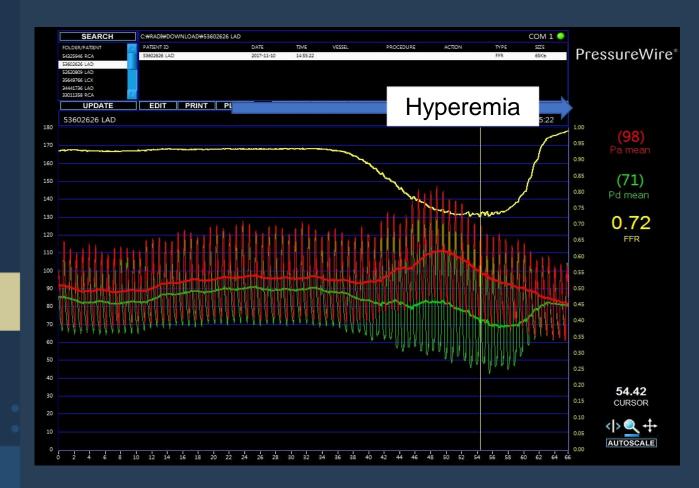

Park SJ, Ahn JM et al. Eur Heart J. 2013 Nov;34(43):3353-61

Treatment Strategy

Reduced Stent Number and Increased Medical Treatment


FLOWER-MI

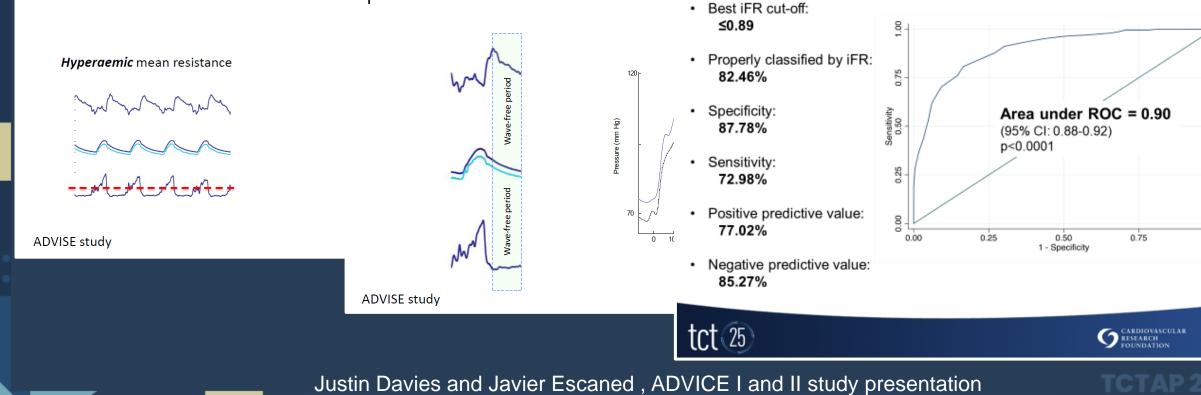
Number of stents per patient


N Engl J Med 2021;385:297-308

FUTURE Trial

J Am Coll Cardiol 2021;78:1875–1885

FFR Requires Hyperemia (Adenosine, ATP, Nicorandil etc.)



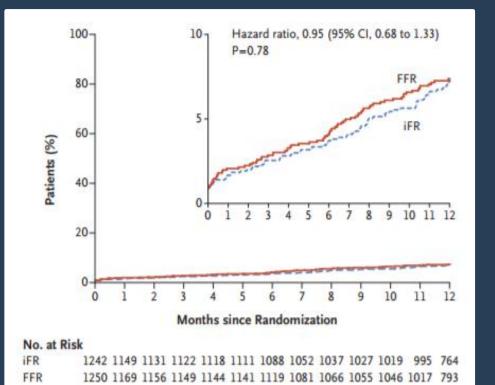
- Contraindicated or disliked by patients
- Adds costs and time
- Adds inconvenience and risk

Since TCT 2011, iFR, Instantaneous wave-free ratio

Hypothesis 1

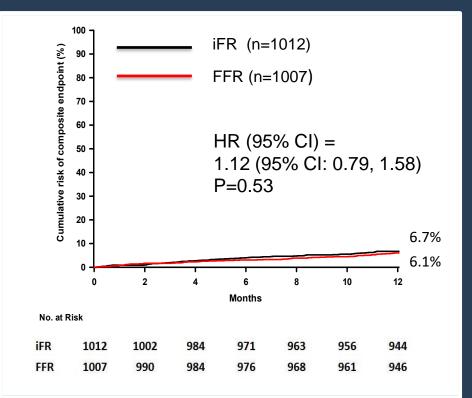
Resistance measured at rest durir Hypothesis 2 free period is similar to mean resi hyperaemia. The Pd/Pa ratio (

The Pd/Pa ratio **(iFR)** during the **r**e period was similar to **FFR**.


Diagnostic accuracy of iFR Compared with FFR, 0.80

1.00

iFR is Non-Inferior to FFR to Guide Revascularization Decision


DEFINE-FLAIR

ACC 2017,

N Engl J Med. 2017 May 11;376(19):1824-1834

iFR-SWEDEHEART

N Engl J Med. 2017 May 11;376(19):1813-1823

Guidelines

ESC Guideline 2018

Recommendations	C lass ^a	Level ^b
When evidence of ischaemia is not avail- able, FFR or iwFR are recommended to assess the haemodynamic relevance of intermediate-grade stenosis. ^{15,17,18,39}	I	A
FFR-guided PCI should be considered in patients with multivessel disease undergoing PCI. ^{29,31}	lla	В
IVUS should be considered to assess the severity of unprotected left main lesions. ^{35–37}	lla	В

ACC/AHA Guideline 2021

Recommendations for the Use of Coronary Physiology to Guide Revascularization With PCI Referenced studies that support the recommendations are summarized in Online Data Supplement 5.

COR	LOE	Recommendations	
1	Α	 In patients with angina or an anginal equivalent, undocumented ischemia, and angio- graphically intermediate stenoses, the use of fractional flow reserve (FFR) or instantaneous wave-free ratio (iFR) is recommended to guide the decision to proceed with PCI.¹⁻⁶ 	
3: No benefit	B-R	 In stable patients with angiographically inter- mediate stenoses and FFR >0.80 or iFR >0.89, PCI should not be performed.⁷⁻¹⁰ 	

ТСТАР 2022

Since 2017, Many Non-Hyperemic Pressure Ratios (NHPR)

JOURNAL OF THE AMERICAN COLLEGE OF 0 2017 BY THE AMERICAN COLLEGE OF CA PUBLISHED BY ELSEVIER

ORIGINAL INVESTIGATION

Agreement of to Aortic Corol

Yuhei Kohayashi MD^{ab} Nils P. Job Colin Berry, MBCHB, PaD, F. Allen Je Gilles Rioufol, MD, PuD, Seung-Jung

Keith G. Oldroyd, MBCHB, MD,⁷ Ema Bernard De Bruvne, MD, PaD," Willia

ABSTRACT

BACKGROUND Recently, 2 random resting coronary physiological index. distal to aortic coronary pressure (Pal catheterization laboratory: however.

OBJECTIVES The goal of this stud

METHODS A total of 763 patients w resting conditions. Using iFR <0.89 a assessed.

RESULTS According to the indepen (82.2% vs. 96.1% n < 0.001) respect (interquartile range: 0.88 to 0.95), and According to the receiver-operating c curve: 0.98; 95% confidence interval: accuracy, sensitivity, specificity, positi and 92.7%, respectively. These results

CONCLUSIONS P,/P, was analyzab agreement with iFR, suggesting that it Approximate FFR Compared to Pure Res @ 2017 by the American College of Ca

From the "Stanford University School of Medi-McGovern Medical School at UTHealth and Me Netherlands: "Karolinska Institutet, Sidersiuk MCC Editor-in-Chief Jubilee National Hospital, Clydebank, Scotland ardiovascular and Medical Sciences, Unive Brook University Medical Center, Story Brook, National University Hospital, Seoul, South Rom CARMEN, Loon, France, "University of Ulsan Center Aalst, Aalst, Belgium; and the "Eindhor

Stuart Watkins, MBCaB, MD,5 Lokien X. van Nunen, MD, PaD

BACKGROUND Pressure me resting-state physiological as **OBJECTIVES** The aim of thi

JOURNAL OF THE AMERICAN COL 0 2017 THE AUTHORS. PUBLISHED COLLEGE OF CARDIOLOGY FOUND

THE CC BY-NC-ND LICENSE (http:

Comparison

Diastolic Res

Are They All Equa

Marcel van't Veer, MSc, PHD,

METHODS In the population

study, iFR calculated by propri compared with the ratio of res (dPR), 25% to 75% of diastole iFR-like indexes shortening the differences. Spearman correlat diagnostic performance with re

RESULTS Median iFR in 197 pa differences (+ SD) with iER w >0.99 (p < 0.001 for all). Are accuracy compared with FFR

CONCLUSIONS All diastolic agreement with FFR. A numeri ouidelines, and clinical recor -Unselected Population Referred © 2017 The Authors. Published access article under the CC BY-

From the ^aDepartment of Cardiology Engineering, Eindhoven University of ular Research Centre, University of G Golden Jubilee National Hospital, Clyd ork; ^fCardiovascular Center Aalst, Aa Naples Italy Dr. van't Veer has receiv has couity in Philips, GE, HeartFlow, a lude Medical and Cardiovascular Sys Boston Scientific, Dr. De Bruvne is sh Omega Pharma: his institution, the Car JACC Editor in Chief tronik, and St. Jude Medical; and his in Opsens, and Boston Scientific outside o as received speaker and consultan of Glassow hold research and consult Abbott; and has received research sup relevant to the contents of this paper

Listen to this m

Dr. Valentin Fuste

Validation of a novel non-hy artery stenosis severity: the (VALIDATE RFR) study

Johan Svanerud¹, MSc; Jung-Min Ah Ankita Gore^{3,7}, BS, MSc; Akiko Maeh Bernard De Bruvne⁸, MD, PhD; Nils I Stuart Watkins¹⁰, MD; Colin Berry^{10,1} Seung-Jung Park2, MD, PhD; Ziad A.

1. Coroventis Research AB, Uppsala, Sweden; 2. Asan Medi Research Foundation, New York, NY, USA; 4. St. Francis Ho the Netherlands; 6. Eindhoven University of Technology, De 7. NewYork-Presbyterian Hospital/Columbia University Me Hospital, Aalst, Belgium; 9. Weatherhead PET Center, Divis at UTHealth and Memorial Hermann Hospital, Houston, T Kingdom; 11. Institute of Cardiovascular and Medical Scien This paper also includes supplementary data published online at

Abstract KEYWORDS

• fractional flow

reserve

innovation

modalities

other imaging

Airns: Randomised controlled to fractional flow reserve (FFR) for by sensitive landmarking of the resistance occur during a fixed a novel non-hyperaemic index o distal coronary pressure to aorti and timing within the cardiac cy

> Methods and results: VALII RFR. The primary endpoint was in 651 waveforms in which iFR correlated to iFR (R2=0.99, p< 0.020). The diagnostic performa specificity 96.9%, positive predi operating characteristic curve of 95% CI: -0.009 to 0.006, p=0.0 diac cycles and 32.4% (167/516 compared to FFR was lowest (4

Conclusions: RFR is diagno Pd/Pa during the full cardiac cyc would be missed by assessmen

*Corresponding author: Columbia University Medical Co New York, NY 10019, USA. E-mail: zaa2112@cohmbia.e

@ Europa Digital & Publishing 2018. All rights reserved

Diastolic pressure ratio validation vs. the instan

Nils P. Johnson¹, Wenguang Li², Xi Chen² Colin Berry^{3,4}, William F. Fearon⁵, and K

Weatherhead PET Center, Distance of Cardiology, Department of Medicine, Mr. ²Boston Scientific Corporation, CA, USA; ³Bottah Heart Foundation Glagow Card Glagow, Glagow, UK; ⁴West of Scotland Heart and Larg Centre, Golden Jubies I Cantiology, Stanford University, Stanford, CA, USA Received 14 December 2017; revised 16 February 2018; editorial decision 12 February 20

	The instantaneous wave-free ratio ()FR non-hyperaemic conditions. To test for unic coronary pressure measurements, we comp numerical similarity and test/retest repeatab
ds wits	Eight hundred and ninety-three lesions from ies. Distolic pressure ratio and a linear trai Mean difference between <i>dPk</i> and iFR [Å (ROC) curve (ALC) = 0.997] mirrored t <0.001 ± 0.004, $r^2 = 0.998$, ALC = 1.00, over a broad range of the cardiac cycle. A ($A = -0.012 \pm 0.031$, $r^2 = 0.927$, AUC = 0.0 matched almost exactly (average $A = <0.001$
sions	Our dPR offers numerical equivalency to i period of diastole, the agreement between ition further confirm numerical equivalency

Keywords Instantaneous wave-free ratio . Coronary

Introduction

Aims

Metho

and res

Conciu

Resting coronary physiology to guide revascularization procedures dates to the very advent of percutaneous coronary intervention (PCI). In the first reported series of coronary balloon angioplasties i 1979, Andreas Grüntzig measured the pressure drop across the stenosis (ΔP) at baseline and again after dilation, although biased by the acknowledged iatrogenic gradient generated by the device itself. Pressure gradient assessment was a routine component of interven tional procedures in the initial years, until catheter's became too small to obtain reliable signals through the central channel. In some early clinical cases at Emory University, measurement of resting AP wa

Corresponding author. Tel: +44-141-951 5180, Ernall: haith-skinoyd@rhanet Published on behalf of the European Society of Cardiology, All rights reserved. C

ORIGINAL ARTICLE

Validation of Resting Diastolic Pressure Ratio Calculated by a Novel Algorithm and Its Correlation With Distal **Coronary Artery Pressure to Aortic Pressure, Instantaneous** Wave–Free Ratio, and Fractional Flow Reserve

The dPR Study

See Editorial by Kern and Seto

BACKGROUND: Instantaneous wave-free ratio (iFR) offers a reliable non-hyperemic assessment of coronary physiology but requires dedicated proprietary software with a fully automated algorithm. We hypothesized that dPR (diastolic pressure ratio), calculated with novel universal software, has a strong correlation with iFR, similar diagnostic accuracy relative to resting distal coronary artery pressure/aortic pressure and fractional flow reserve (FFR),

METHODS AND RESULTS: The dPR study is an observational, retrospective, single-center cohort study including patients who underwent iFR or FFR. Dedicated software was used to calculate the dPR from Digital Imaging and Communications in Medicine (DICOM) pressure waveforms. The flat period on the pressure difference between sample (dP) to the time difference between the same sample points (dt) signal was used to detect automatically the period, where the resistance is low and constant, and to calculate the dPR, which is an average over 5 consecutive heartbeats. The software was validated by correlating iFR results with dPR. Software validation was done by comparing 78 iFR measurements in 44 patients who underwent iFR. Mean iFR and dPR were 0.91±0.10 and 0.92±0.10, respectively, with a significant linear correlation (R=0.997; P<0.001). Diagnostic accuracy was tested in 100 patients who underwent FFR. Mean FFR, resting distal coronary artery pressure/aortic pressure, and dPR were 0.85±0.09, 0.94±0.05, and 0.93±0.07, respectively. There was a significant linear correlation between dPR and FFR (R=0.77; P<0.001). Both distal coronary artery pressure/aortic pressure and dPR had good diagnostic accuracy in the identification of lesions with an FFR ≤0.80 (area under the curve, 0.84; 95% CI, 0.76–0.92 and 0.86; 95% CI, 0.78-0.93, respectively).

CONCLUSIONS: dPR, calculated by a novel validated software tool, showed a strong linear correlation with iFR, dPR correlated well with FFR with a good diagnostic accuracy to identify positive FFR.

*J. Ligthart and Dr Masdjedi contributed equally to this paper.

Key Words: catheter = methods physiology # software # software validation

© 2018 American Heart Association, Inc.

https://www.ahaiournals.org/journal/ circinterventions

Joost Daemen, MD, PhD

Jurgen Ligthart, RT*

Karen Witberg, RN

Frits Mastik, BSc

BSc

PhD

PhD

MD, PhD

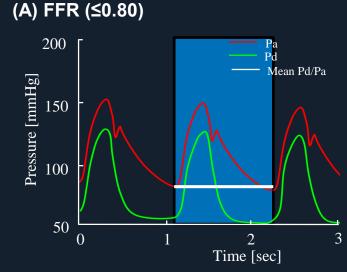
Kaneshka Masdjedi, MD*

Laurens van Zandvoort,

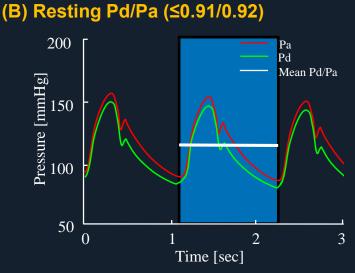
Miguel E. Lemmert, MD,

Roberto Diletti, MD, PhD

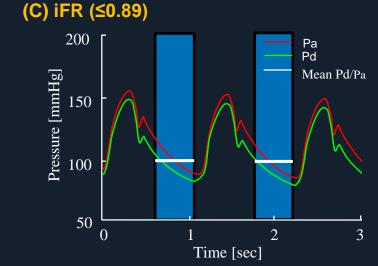
Jeroen Wilschut, MD

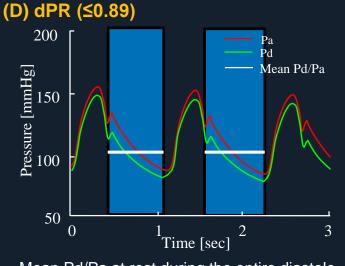

Peter de Jaegere, MD,

Felix Zijlstra, MD, PhD

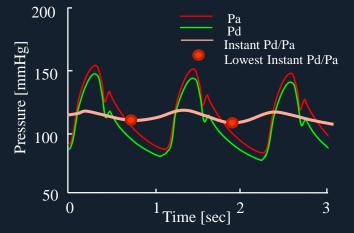

Isabella Kardys, MD, PhD

Nicolas M Van Mieghem,

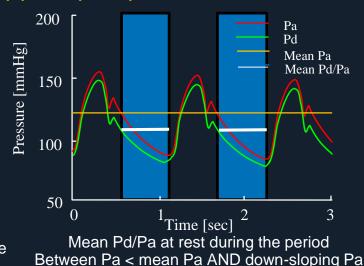

Definition of Physiologic Indices

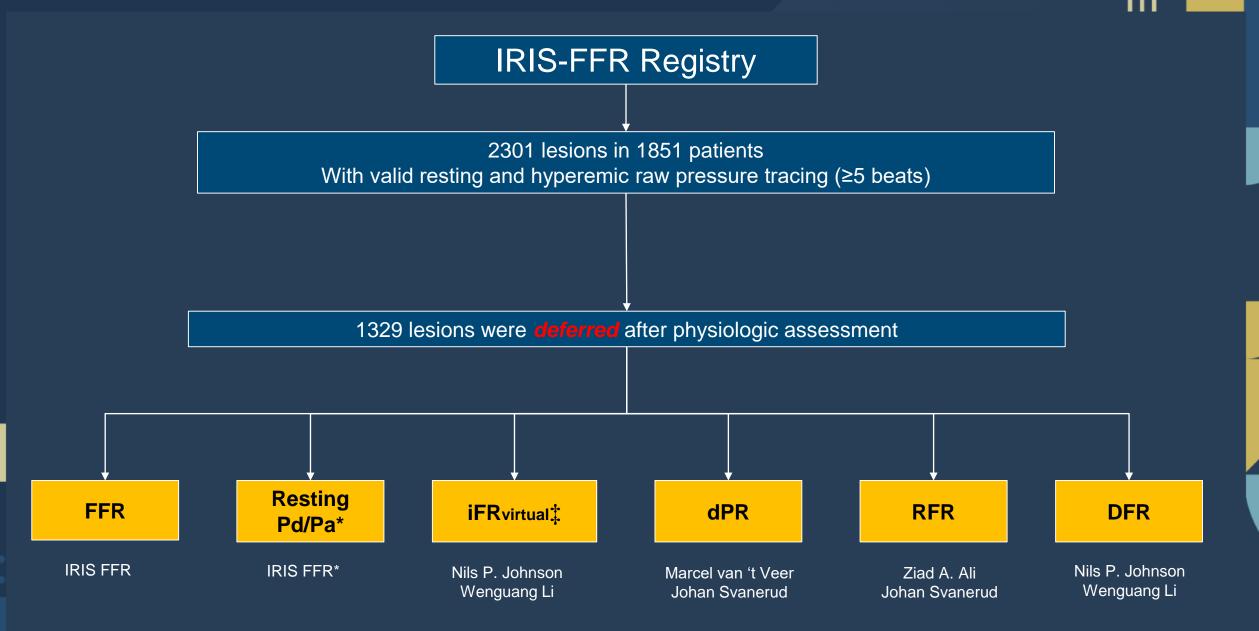

Mean Pd/Pa at hyperemia during the entire cardiac cycle

Mean Pd/Pa at rest during the entire cardiac cycle



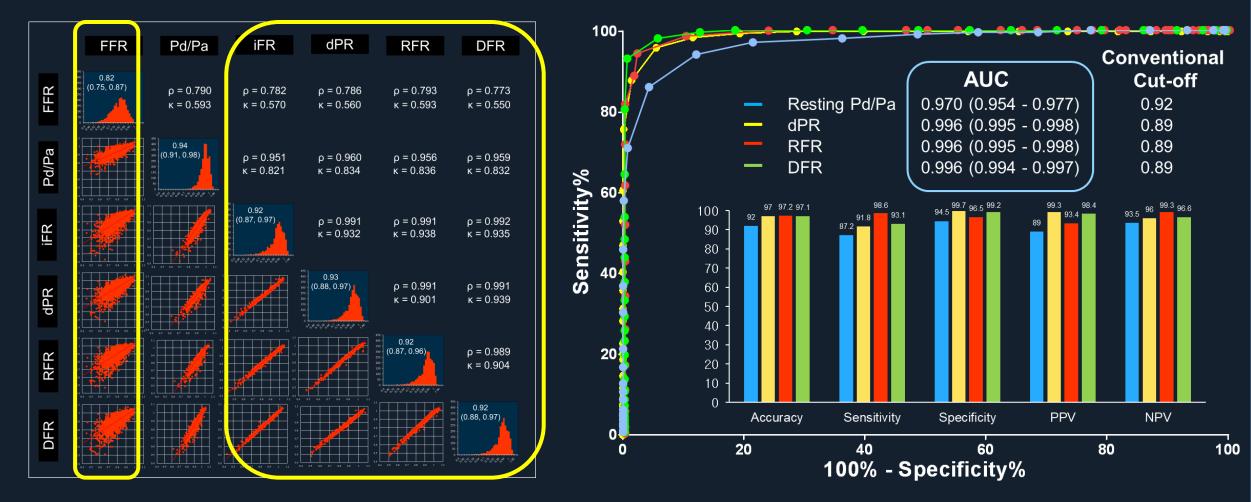
Mean Pd/Pa at rest during wave free period (WFP)


Mean Pd/Pa at rest during the entire diastole



Lowest Instant Pd/Pa at rest during the entire cardiac cycle

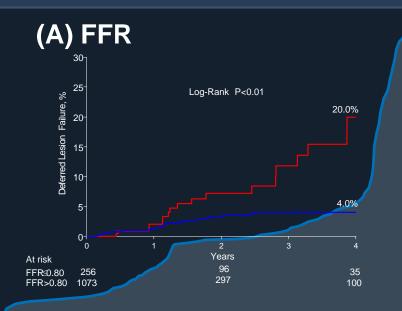
(F) DFR (≤0.89)

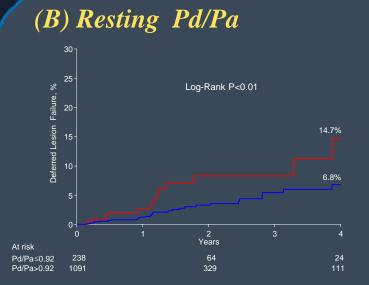


*All resting tracings were confirmed by Wenguang Li during virtual iFR and DFR calculation ‡calculated using the proprietary software (Volcano Corporation)

NHPR vs. iFR

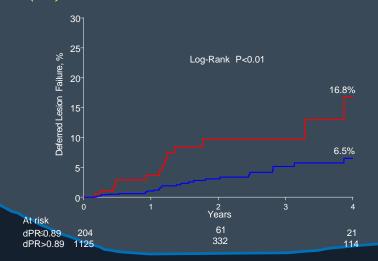
Prediction of iFR ≤ 0.89

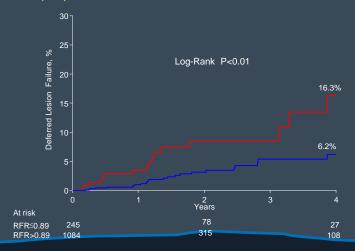


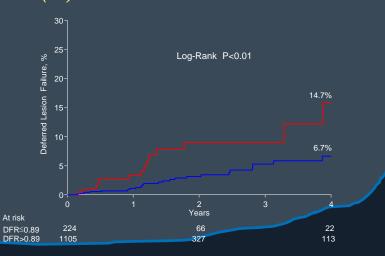

80-85% Accuracy

97% Accuracy

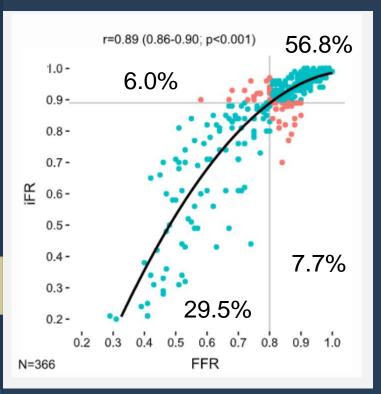
TCTAP 2022

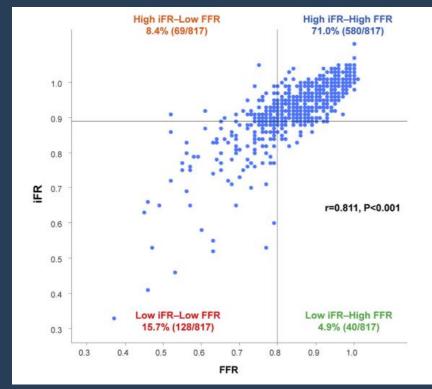

Kaplan-Meier Curves

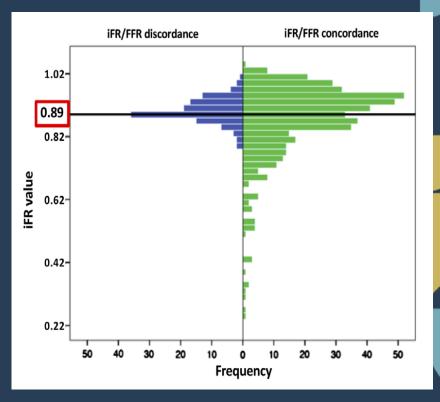



(D) dPR

(E) RFR


(F) DFR



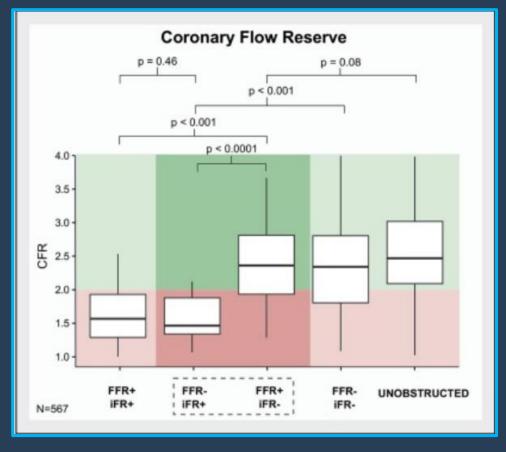

Frequency of FFR/iFR Discordance

13.3 %

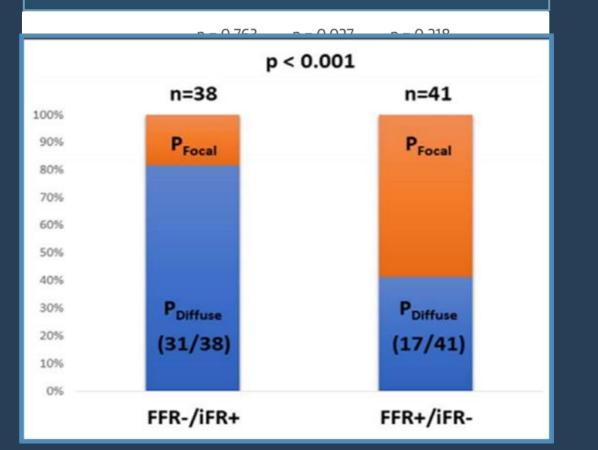
13.7 %

20.6 %

Cook CM et al. JACC Cardiovasc Interv. 2017;10(24):2514-2524

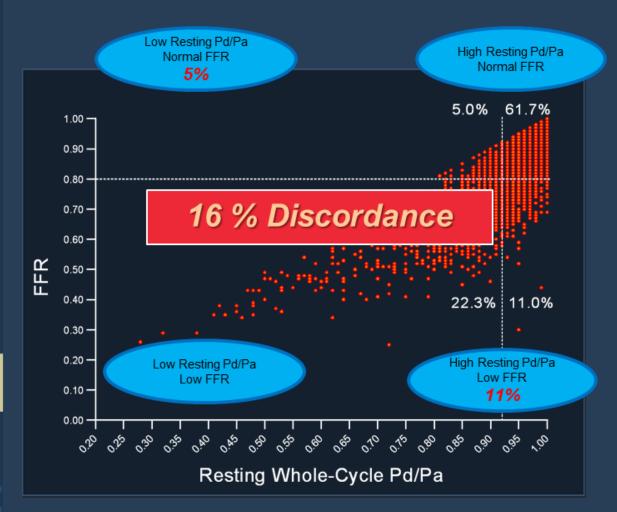

SH Lee et al. JACC Cardiovasc Interv. 2019;12(20):2018-2031

Derimay F et al. Catheter Cardiovasc Interv. 2019 Sep 1;94(3):356-363


ГСТАР 2022

Physiologic and Anatomic Characteristics of Discordant Lesions

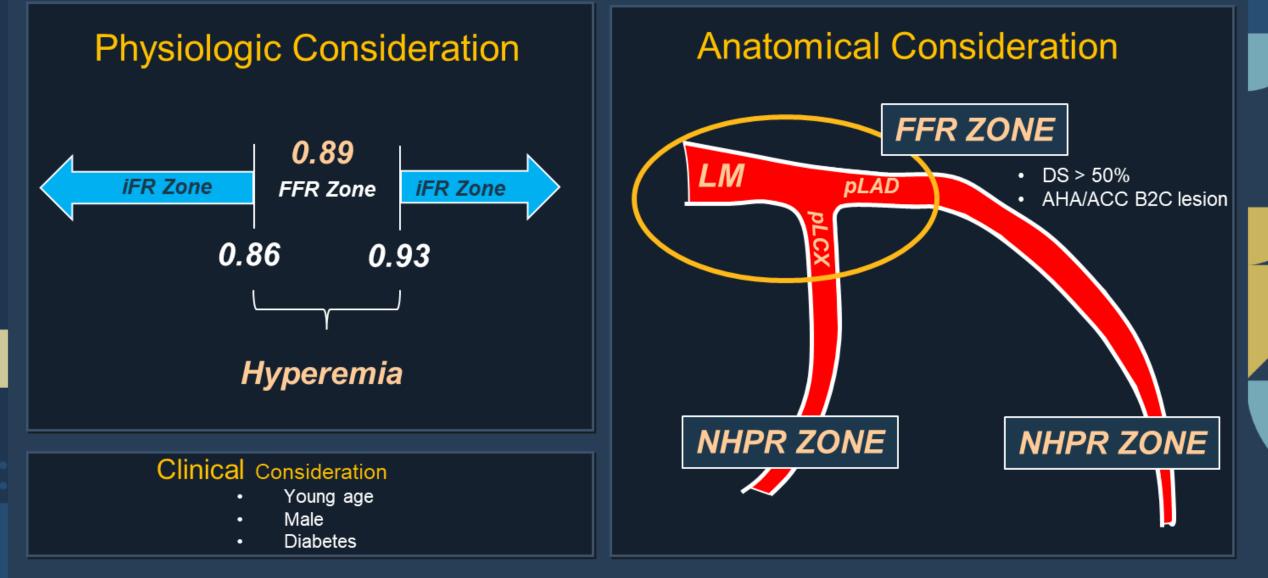
Differences in Coronary Flow Reserve


Cook CM et al. JACC Cardiovasc Interv. 2017;10(24):2514-2524 FFR+/iFR- : Focal Disease FFR-/iFR+ : Diffuse Disease

JACC Cardiovasc Imaging. 2020 Mar;13(3):746-756. Circ Cardiovasc Interv. 2019;12:e007494

*Adverse plaque characteristics include low-attenuation plaque, positive remodeling, spotty calcification, and napkin risk sign

Clinical Characteristics of Discordant Lesions



	Odds Ratio	95% CI	P Value
Resting Pd/Pa≤0.92 and FFR>0.80 Very	Small Hyperemic Pressure Drop		
Age	1.02	1.01-1.03	0.004
Gender (Male) Low CFR phen	otype ⁷⁴	0.59-0.94	0.012
Diabetes	1.50	1.19-1.89	0.001
Hyperlipidemia LM/pLAD	0.72	0.57-0.91	0.005
Proximal location (vs. mid to distal)	0.60	0.49-0.78	<0.001
Resting Pd/Pa>0.92 and FFR≤0.80 Very Big Hyperemic Pressure Drop			
Age	0.98	0.97-0.99	<0.001
Gender (Male)	1.79	1.45-2.22	<0.001
Diabetes		0.66-0.96	0.016
Family history	CFR phenotype	0.50-0.87	0.003
Chronic renal failure	0.32	0.14-0.75	0.008
Diameter stenosis (≥50%)	4.06	3.16-5.21	<0.001
AHA/ACC B2C lesion	1.44	1.20-1.71	<0.001

Ahn JM, Park SJ et al. Circ Cardiovasc Interv. 2020 May;13(5):e007868

ГСТАР 2022

How To Compromise the Discordance

TCTAP 2022

Summary

- Current guideline widely endorsed intracoronary physiology, both FFR and iFR.
- iFR could be used in the revascularization decision-making, particularly when hyperemic agents are not easily available.
- FFR would be preferred in lesions which was proximally located or showed angiographically tight or complex.
- All NHPR (resting Pd/Pa, iFR, dPR, RFR, DFR) are the same. Physicians can apply other NHPRs in daily practice in the same manner as iFR.
- In the post-ISCHEMIA era, FFR≤0.80 (or iFR ≤0.89) would be a minimum requirement for coronary revascularization and stenting on the stenosis with FFR>0.80 (or iFR >0.89) is never justified. Please defer.