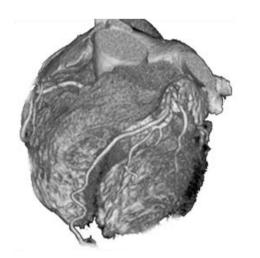

Imaging Based Coronary Physiology in the Clinical Practice: CT_{FFR} and $Angio_{FFR}$

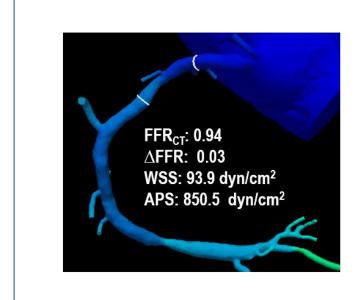
Bon-Kwon Koo, MD, PhD

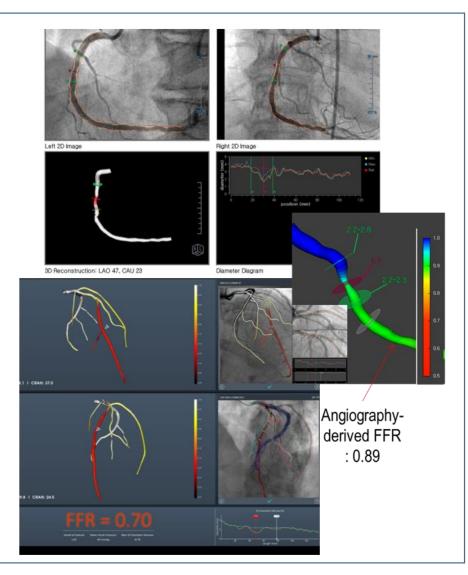


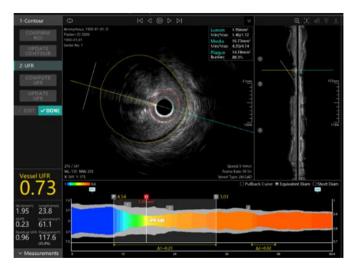
Seoul National University Hospital, Seoul, Korea

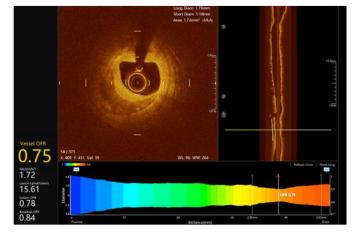
15 years ago, in the cath lab.....

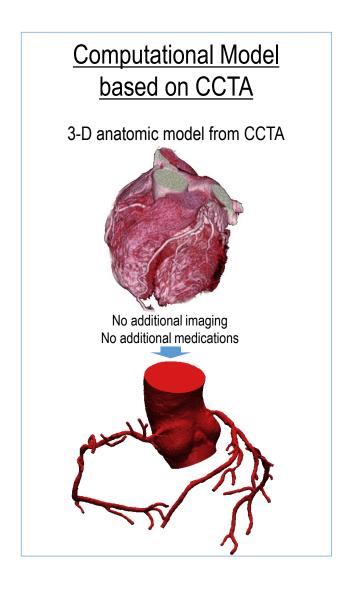
Is it possible to assess hemodynamics from images

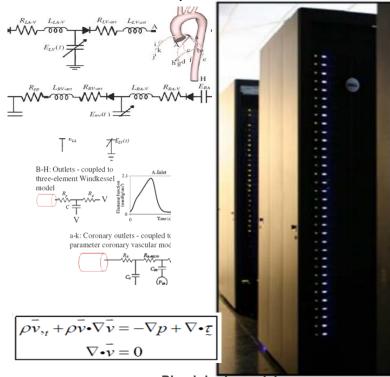



FFR, without invasive procedure without pressure wire, without adenosine

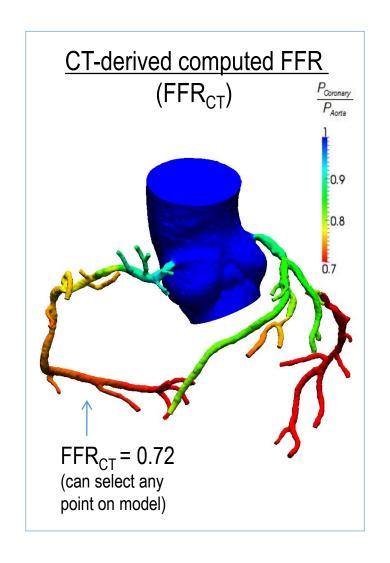



Image-based physiologic assessment





Patient-specific non-invasive FFR using CT & CFD


Blood Flow Solution

Blood flow equations solved on supercomputer

Physiologic models

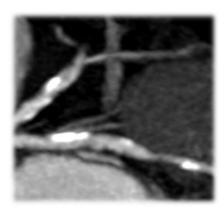
- -Myocardial demand
- -Morphometry-based boundary condition
- -Effect of adenosine on microcirculation

Guideline-directed pathway

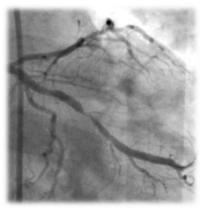
CCTA


>50% diameter stenosis

Invasive angiography

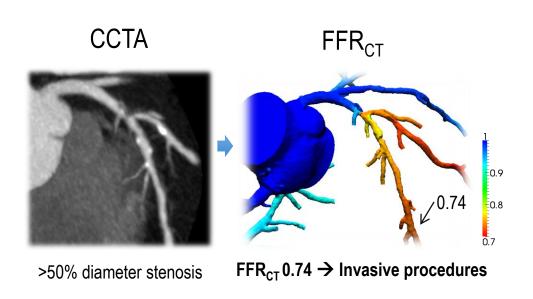


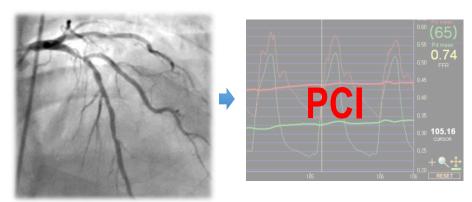
>50% diameter stenosis

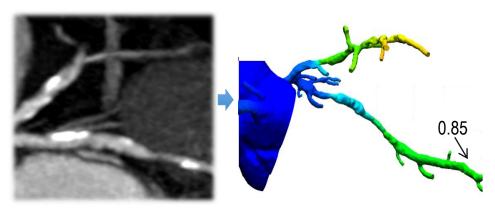

FFR

FFR 0.74 → PCI

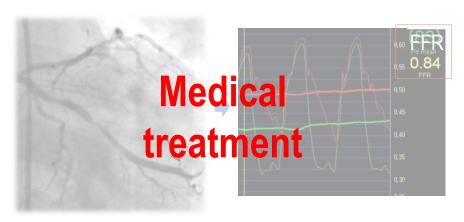
>50% diameter stenosis


>50% diameter stenosis


FFR 0.84


→ Medical treatment

Risk-(almost) free, non-invasive, cost-saving pathway



Invasive angiography and PCI

>50% diameter stenosis

>50% diameter stenosis

FFR 0.84 → no ischemia

This technology can be a gate keeper....

Journal of the American College of Cardiology © 2011 by the American College of Cardiology Foundation Published by Elsevier Inc. Vol. 58, No. 19, 2011 ISSN 0735-1097/\$36.00 doi:10.1016/j.jacc.2011.06.066

Cardiac Imaging

Diagnosis of Ischemia-Causing Coronary Stenoses by Noninvasive Fractional Flow Reserve Computed From Coronary Computed Tomographic Angiograms

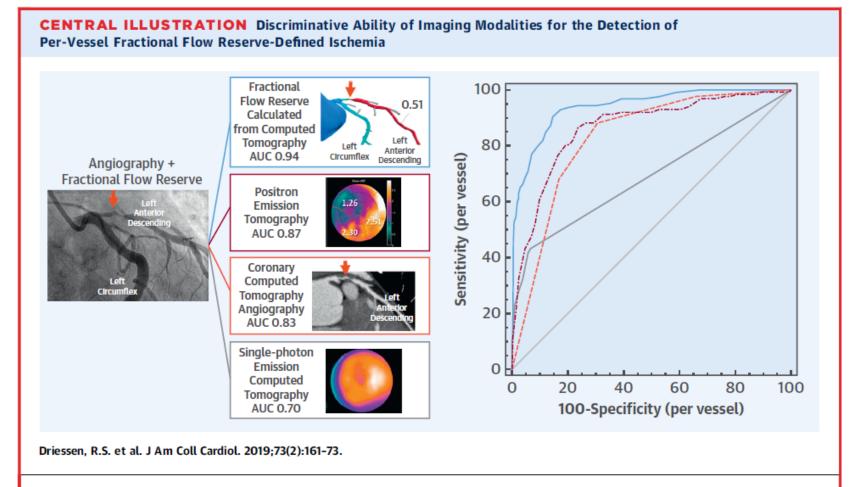
Results From the Prospective Multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) Study

Bon-Kwon Koo, MD, PhD,* Andrejs Erglis, MD, PhD,† Joon-Hyung Doh, MD, PhD,‡ David V. Daniels, MD,§ Sanda Jegere, MD,|| Hyo-Soo Kim, MD, PhD,* Allison Dunning, MD,¶ Tony DeFrance, MD,# Alexandra Lansky, MD,** Jonathan Leipsic, BSc, MD,†† James K. Min, MD‡‡ Seoul and Goyang, South Korea; Riga, Latvia; Palo Alto, San Francisco, and Los Angeles, California; New York, New York; New Haven, Connecticut; and Vancouver, British Columbia, Canada

	Sens	Specif	PPV	NPV	Accuracy
DISCOVER -FLOW	93%	82%	85%	91%	87%
DeFACTO	90%	54%	67%	84%	73%
NXT	86%	79%	65%	92%	81%
	90%	72%	72%	89%	80%

First author	Year design	study population	number of evaluable patients	number of vessels	Time period between FFR and FFRCT	CFD software	thresh	
							FFR	FFRCT
Yang ⁹	2019 retrospective, single-center	underwent CCTA for evaluation of CAD and FFR measurement	100	125	<30 days	Auto vessel	≤0,80	≤0,80
Wang ¹⁰	2015 retrospective, single-center	suspected CAD	32	32	≤3 months	Siemens cFFR	<0.80	≤0.80
Tesche ¹¹	2016 retrospective, single-center	suspected or known CAD	37	37	<3 months	Siemens cFFR	≤0.80	≤0,80
Fang ¹²	2019 retrospective, multicenter	suspected CAD	338	422	<3 months	United-Imaging	≤0,80	≤0.80
Tang ¹³	2019 retrospective, multicenter	suspected or known CAD	136	183	<60 days	Siemens cFFR	≤0,80	≤0.80
Shi ¹⁴	2017 retrospective, single-center	suspected CAD	29	36	4.3 days (0-14 days)	COMSOL Multiphysics	≤0.80	≤0.80
Sand 15	2018 Prospective, single-center	patients with stable chest pain	143		ND	Heart Flow	≤0.80	≤0.80
Renker ¹⁶	2014 retrospective, single-center	suspected or known CAD	53	67	<3 months	Siemens cFFR	<0.80	<0.80
Dsawa ¹⁷	2017 Prospective, single-center	suspected CAD	18	26	<60 days	Heart Flow	< 0.80	<0.80
Nørgaard ¹⁸	2014 Prospective, milticenter	suspected CAD	254	484	18 (1-55)days	Heart Flow	≤0.80	≤0.80
Miyajima ¹⁹	2020 retrospective, single-center	suspected CAD	97	105	<3 months	W.LP.	≤0.80	≤0.80
Min ²⁰	2012 Prospective, milticenter	suspected or known CAD	252	407	15.5 (5-33)days	Heart Flow	≤0.80	≤0.80
Kurata ²¹	2017 Prospective, single-center	suspected or known CAD	21	29	55 (19-120)days	Siemens cFFR	≤0.80	≤0.80
Kruk ²²	2016 Prospective, single-center	suspected CAD	90	96	<6 months	Siemens cFFR	≤0,80	≤0.80
Koo ²³	2011 Prospective, milticenter	suspected or known CAD	103	159	2.3 (0-26)days	Heart Flow	≤0,80	≤0.80
Ko ²⁴	2019 Prospective, single-center	no known CAD	49	91	ND	Heart Flow	≤0.80	≤0.80
Ko ²⁵	2017 Prospective, single-center	Symptomatic patients with no known CAD	30	58	ND	Toshiba Medical Systems Corp	≤0.80	≤0.80
Kim ²⁶	2014 retrospective, multicenter	significant company stenoses	44	48	12 (2-40)days	Heart Flow	≤0.80	≤0.80
Kawaji ²⁷	2017 Prospective, single-center	suspected significant CAD	48	70	<60 days (23.6 ± 15.5)	Heart Flow	≤0.80	≤0.80
Saur ²⁸	2017 Prospective, single-center	STEMI Patients	60	124	mean 1 day	Heart Flow	≤0.80	≤0.80
De Geer ²⁰	2015 retrospective, single-center	underwent CCTA and FFR measurement	21	23	49 (4-106 days)	Siemens cFFR	≤0,80	≤0.80
Coenen ³⁰	2015 retrospective, single-center	suspected or known CAD	106	189	<50 days	Siemens cFFR	≤0,80	≤0.80
Chung ³¹	2017 retrospective, multicenter	suspected or known CAD	117	218	<30 days	Toshiba Medical	≤0.80	≤0.80

CAD= company artery disease; CCTA= coronary computed tomography angiography; CFD= computational fluid dynamics; FFR= fractional flow reserve; FFRCT= computed tomography-based fraction flow reserve; ND= not defined.

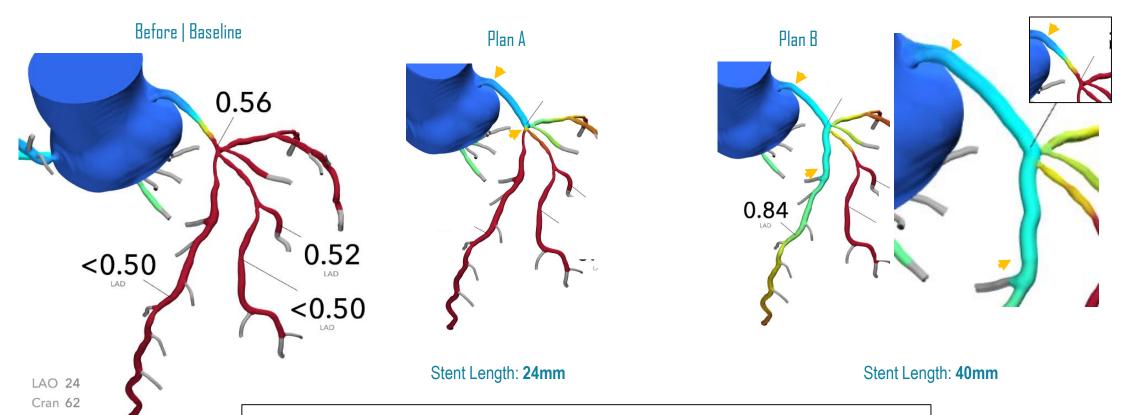

Perpatient and pervessel pooled analysis results

Level	Number of studies	Sensitivity (95%CI)	Specificity (95%CI)	AUC
Per-patient	13	0.88 (0.85-0.90)	0.79 (0.71-0.85)	0.89
Per-vessel	22	0.85 (0.82-0.87)	0.81 (0.76-0.85)	0.87

Luo Y, et al. Hellenic J Cardiol 2022

Diagnostic performance among non-invasive tests

Significance of stable coronary artery disease, as defined by invasive FFR, was prospectively tested with several noninvasive imaging modalities. Each patient underwent FFR_{CT}, PET, coronary CTA, SPECT, and ICA with FFR, regardless of imaging results as illustrated by the typical imaging findings of a severe left anterior descending artery stenosis in the **colored boxes**. **Curves with corresponding colors** indicate that FFR_{CT} demonstrated the greatest AUC for the detection of per-vessel ischemia. CTA = coronary computed tomography angiography; FFR = fractional flow reserve; FFR_{CT} = fractional flow reserve calculated from computed tomography; ICA = invasive coronary angiography; PET = positron emission tomography; SPECT = single-photon emission computed tomography.

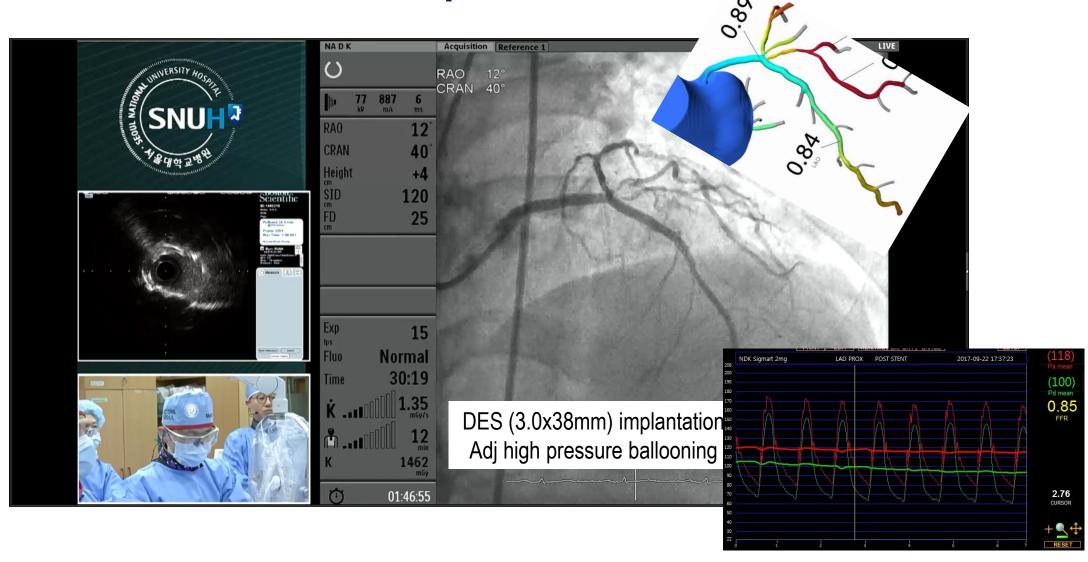

8

10-year outcomes of DISCOVER FLOW study

Predictors of 10-Year TVF

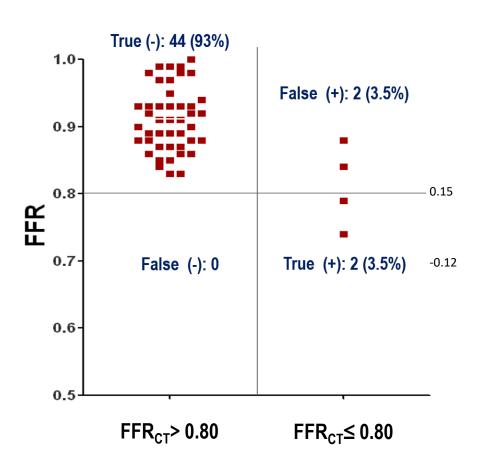
	Unadjusted HR (95% CI)	P-value	Adjusted HR* (95% CI)	P-value
Age	0.99 (0.92 – 1.06)	0.696	-	-
Male	1.88 (0.38 – 9.40)	0.440	-	-
Diabetes mellitus	0.99 (0.20 – 4.81)	0.988	-	-
Hypertension	0.55 (0.16 – 1.84)	0.328	-	-
Hyperlipidemia	1.43 (0.42 – 4.92)	0.568	-	-
Coronary CT stenosis (%)				
0-49%	1 (ref)	NA	1 (ref)	NA
50-69%	1.02 (0.27 – 3.89)	0.971	1.26 (0.29 – 5.41)	0.759
70-99%	2.27 (0.51 – 10.14)	0.282	2.40 (0.51 – 11.19)	0.265
FFR _{CT} (per 0.1 increase)	0.62 (0.44 – 0.88)	0.005	0.61 (0.43 – 0.86)	0.005

Treatment planning using CT-FFR technology

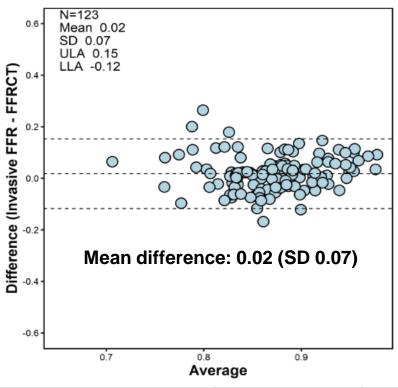


My Treatment Plan

- LM to LAD stenting, stent diameter 3.0, stent length 38-40mm
- Adjunctive balloon inflation for LM
- Leaving the diagonal ischemia alone due to long diffuse disease



PCI and post-PCI FFR

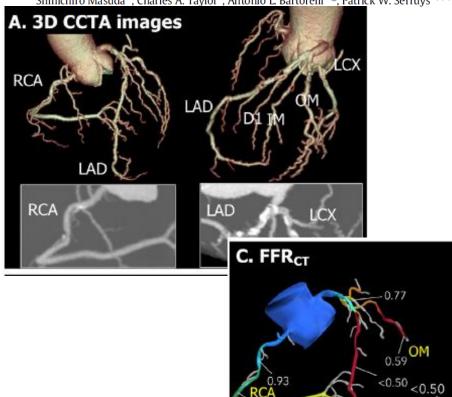


Clinical Studies for Treatment Planner

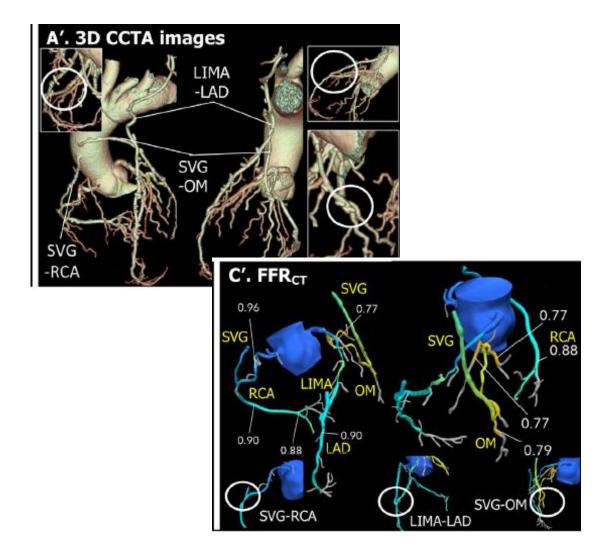
Kim KH, Koo BK, et al. JACC interv 2014

Post-PCI invasive FFR vs FFR_{CT}

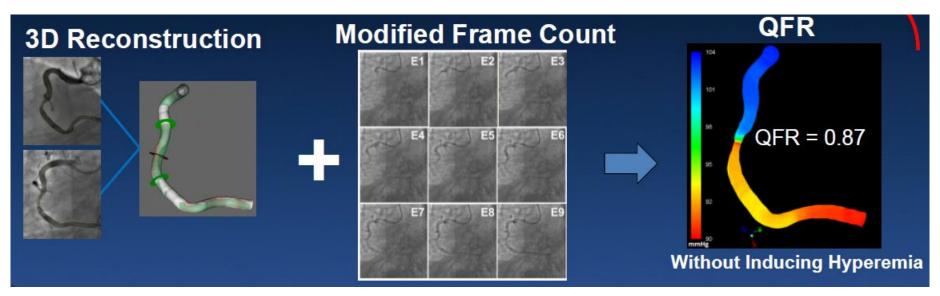
	Invasive FFR	FFR _{CT}
Post-PCI FFR (mean (SD))	0.88 (0.06)	0.86 (0.06)
Functional gain (mean (SD))	0.22 (0.14)	0.22 (0.12)

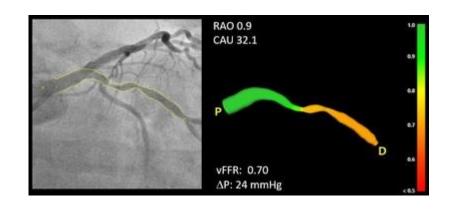


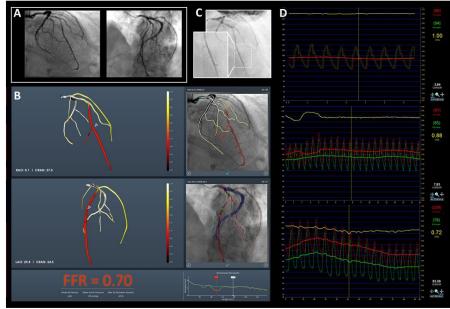
Cardiovascular Revascularization Medicine



Successful coronary artery bypass grafting based solely on non-invasive coronary computed tomography angiography

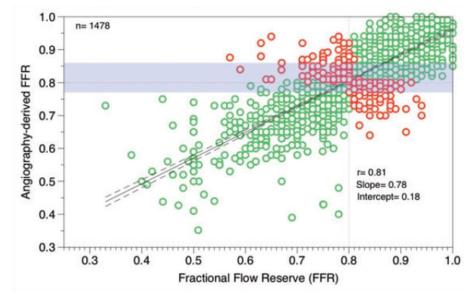

Hideyuki Kawashima ^{a,b}, Yoshinobu Onuma ^{a,c}, Daniele Andreini ^{d,e}, Saima Mushtaq ^d, Marie-angèle Morel ^a, Shinichiro Masuda ^a, Charles A. Taylor ^f, Antonio L. Bartorelli ^{d,g}, Patrick W. Serruys ^{a,c,h,*,**}, Giulio Pompilio ^{d,i}


This case illustrates that in a patient with 3VD, planning and execution of CABG were successfully performed based solely on CCTA combined with FFR_{CT}. Repeat imaging assessment with non-invasive CCTA and FFR_{CT} at 30-day follow-up confirmed the safety of this approach.



Angiography-derived FFR

- QFR
- FFRangio
- vFFR

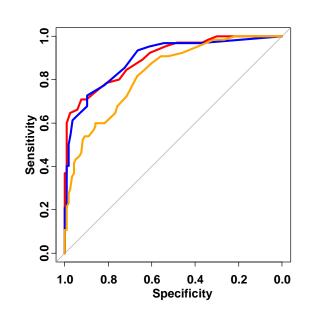


Angiography-derived FFR

Study-level meta-analysis for diagnostic performance

Study	Year	No. Lesion	Technology	Process
WIFI II	2017	240	QFR	Math. Formula
FAVOR II Europe Japan	2017	317	QFR	Math. Formula
Tar et al.	2017	68	3D QCA	Math. Formula
Yazaki et al.	2017	151	QFR	Math. Formula
FAVOR II China	2017	328	QFR	Math. Formula
FAVOR Pilot	2016	84	QFR	Math. Formula
Morris et al.	2013	35	Virtual FFR	CFD
Pellicano et al.	2017	203	FFR_{angio}	Rapid Flow
Tu et al.	2014	77	FFR_{QCA}	CFD
Kornowski et al.	2016	101	FFR_{angio}	Rapid Flow
Trobs et al.	2015	100	IZ3D	CFD
Van Rosendael et al.	2017	15	QFR	Math. Formula
Legutko et al.	2017	123	QFR	Math. Formula

Overall Sensitivity 89% (95% CI 83-94%)


Overall Specificity 90% (95% CI 88-92%)

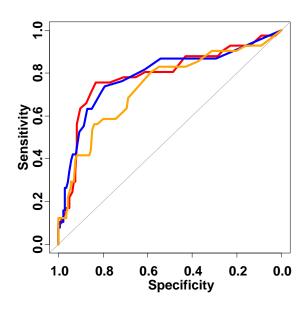
No difference according to different software and different computational methods

Angiography-derived FFR vs. FFR/iFR by PET


RFR as a reference

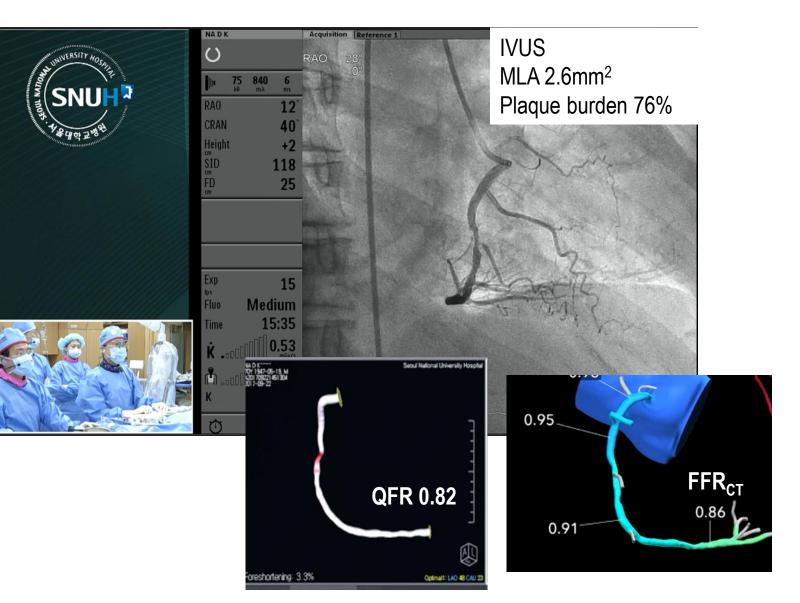
	AUC	95% CI
For FFR	0.899	0.853-0.946
For iFR	0.895	0.846-0.945
For QFR	0.826	0.766-0.886

p value for compari	son
For FFR vs. iFR	0.911
For QFR vs. iFR	0.082
For QFR vs. FFR	0.002

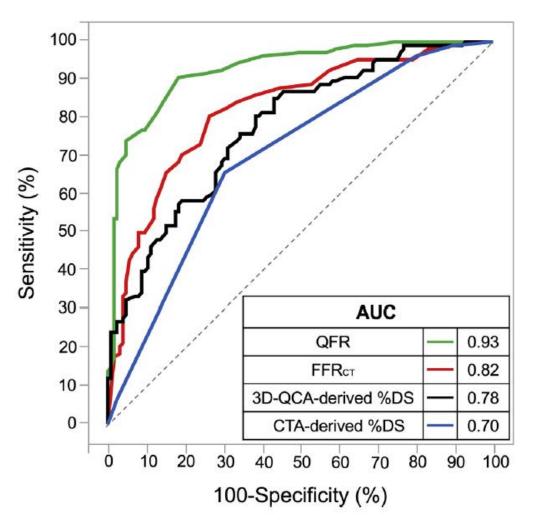

CFR as a reference

	AUC	95% CI
For FFR	0.706	0.625-0.787
For iFR	0.713	0.628-0.797
For QFR	0.685	0.603-0.768

p value for compari	son
For FFR vs. iFR	0.912
For QFR vs. iFR	0.650
For QFR vs. FFR	0.419


CFC as a reference

	AUC	95% CI
For FFR	0.788	0.697-0.879
For iFR	0.789	0.696-0.882
For QFR	0.737	0.643-0.831


p value for comparis	on
For FFR vs. iFR	0.986
For QFR vs. iFR	0.439
For QFR vs. FFR	0.044

Functional significance? CT-FFR vs. Angio-FFR

Functional significance? CT-FFR vs. Angio-FFR

	QFR ≤0.80	FFR _{CT} ≤0.80
True positive	97 (41)	89 (39)
True negative	102 (44)	87 (37)
False positive	23 (10)	38 (16)
False negative	11 (5)	19 (8)
Accuracy, %	85 (81-89)	76 (70-80)
Sensitivity, %	90 (85-94)	82 (76-88)
Specificity, %	82 (77-85)	70 (64-74)
Positive predictive value, %	81 (76-84)	70 (65-74)
Negative predictive value, %	90 (85-94)	82 (76-87)
Positive likelihood ratio	4.9 (3.7-6.2)	2.7 (2.1-3.4)
Negative likelihood ratio	0.1 (0.1-0.2)	0.3 (0.2-0.4)

FAVOR III China

Investigator-Initiated, Multicenter, Sham-Controlled Blinded Randomized Trial

Patients with coronary artery disease scheduled for coronary angiography

Meet all general inclusion and not meet any exclusion criteria

Inclusions: age ≥ 18 years; stable, unstable angina, or post-AMI (≥72 hours). Exclusions: moderate or severe chronic kidney disease (defined as creatinine >150 µmol/L or estimated glomerular filtration rate (GFR) <45 ml/kg/1.73 m²).

Informed consent

Coronary angiography

Meet all angiographic inclusion and not meet any exclusion criteria

Inclusions: patients must have at least one lesion with a percent diameter stenosis between 50% and 90% in a coronary artery with a ≥2.5 mm reference vessel diameter by visual assessment. Exclusions: patients had only one lesion with DS%>90% and TIMI flow <3; interrogated lesions are related with AMI.

Randomization Stratifications

- · Diabetes Mellitus
- Multivessel Disease
- Presence of any vessel with DS% >90% and TIMI flow <3
- Center

Identify target vessels intended to be treated with standard angiography guidance

N=3830 (1:1 randomization)

QFR-guided strategy N=1915

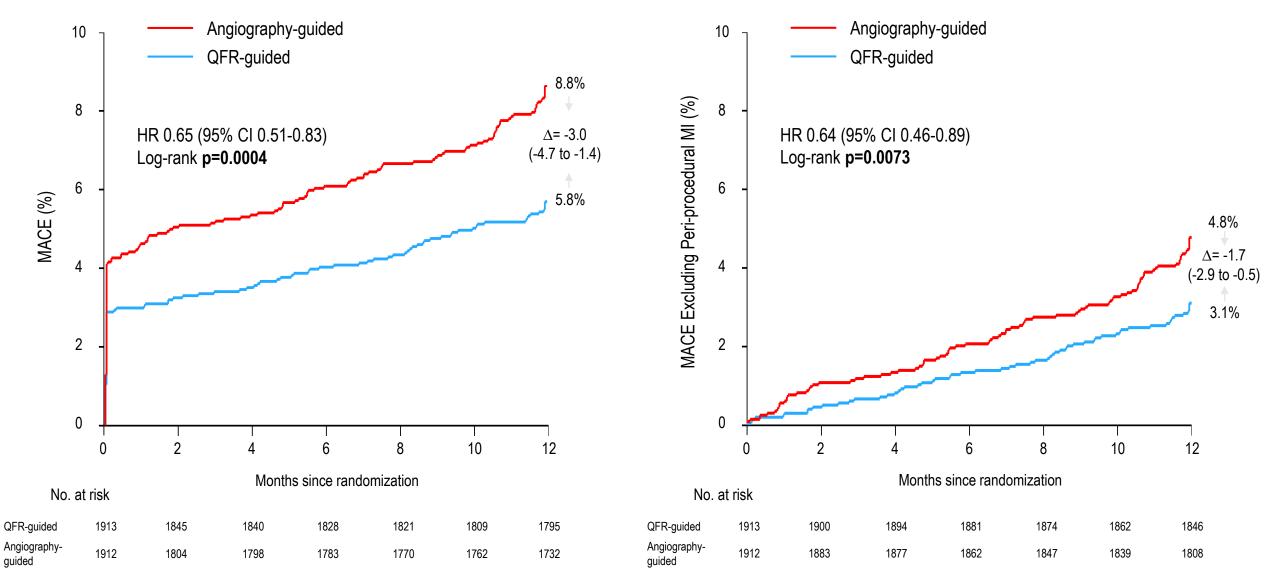
QFR was measured in all coronary arteries containing any lesion with visually-assessed DS% ≥50% and ≤90% and RVD ≥2.5 mm

- QFR ≤0.80: PCI
- QFR >0.80: deferral
- All measured vessel QFR >0.80: OMT alone

Angiography-guided strategy N=1915

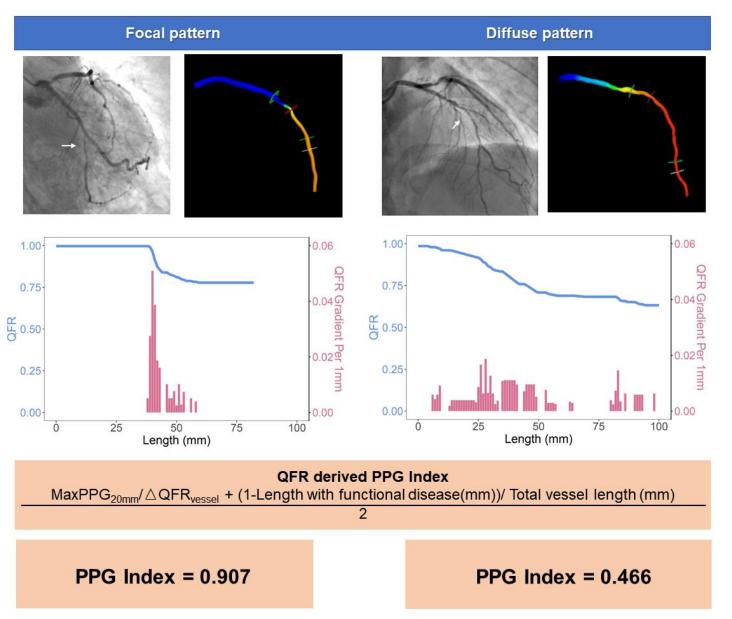
PCI was performed based on visual angiographic assessment per local standard of practice

Independent Organizations


- Core Lab
- CEC
- DSMB
- Data Management
- Statistical Analysis

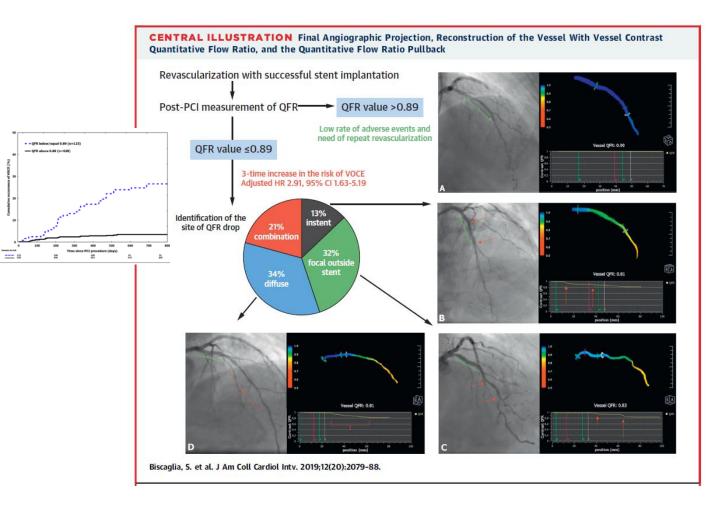
Key Procedural Results

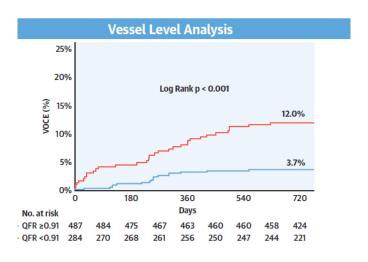
	QFR-guided group (N=1913)	Angiography-guided group (N=1912)	p value
PCI performed	90.5%	99.1%	<0.0001
Number of stents placed per patient	1.45 ± 1.02	1.58 ± 0.97	<0.0001
Use of intravascular imaging	6.2%	6.3%	0.89
Contrast medium used per patient, ml	163.0 ± 75.6	169.7 ± 74.2	0.0060
Fluoroscopy time, min	14.1 ± 8.0	14.9 ± 7.4	0.0013
Adjusted procedure time, min	44.6 ± 28.8	49.5 ± 30.2	<0.0001
PCI lesion success	99.0%	99.3%	0.38
Residual anatomic SYNTAX score	2.4 ± 3.6	2.4 ± 4.0	0.49
Residual functional SYNTAX score	0.7 ± 2.3	1.0 ± 2.8	<0.0001

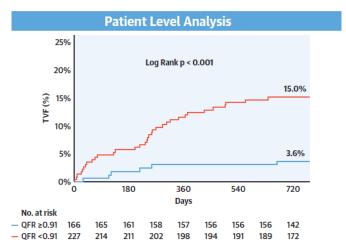

Primary and Major Secondary Endpoints

SNUH Seoul National University Hospital Cardiovascular Center

Xu B, et al. Lancet 2021

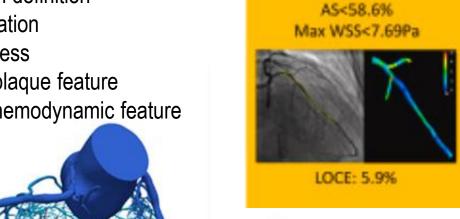

Focal vs. Diffuse disease: Physiological discrimination

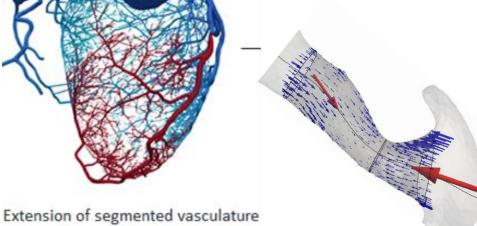



Prognosis after PCI

Prospective HAWKEYE Study

SYNTAX II study: Retrospective analysis

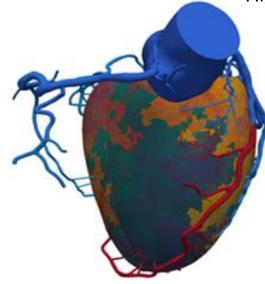




Kogame, et al. JACC intervention 2019

Future of image based hemodynamic assessment

- **Territory**
- Flow
- Microcirculation
- New lesion definition
- Co-registration
- Plaque stress
- High risk plaque feature
- High risk hemodynamic feature





2021 μQFR

- No need of adenosine
- Analysis time: 1 minute
- Only need 1 good angio view
- Short learning curve
- Analysis of all types of bifurcation I esions and side branches
- Analysis of myocardium bridge
- Analysis of angio strain (RWS)
- Analysis of angiography-based mic rocirculatory resistance (AMR)

