Clinical Impact of Prosthesis-Patient Mismatch (PPM) After TAVR What is the Definition and Prognostic Impact of

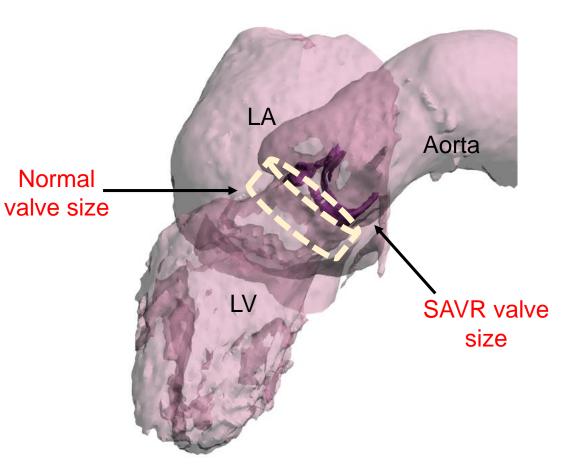
PPM after TAVR

Duk-Woo Park, MD

Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea

Disclosure

 Institutional grant/research funding to CardioVascular Research Foundation (CVRF, Korea) and/or Asan Medical Center from Daiichi-Sankyo, HK InnoN, Abbott, Boston Scientific, Edwards Lifescience, Medtronics, Daewoong Pharm, and ChongKunDang Pharm.

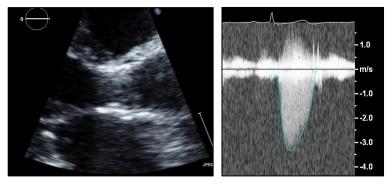

This Issue Was Initially Concerned in SAVR Undersized SAVR in Large Aortic Root : effective prosthetic valve area << normal human valve

Current Topics

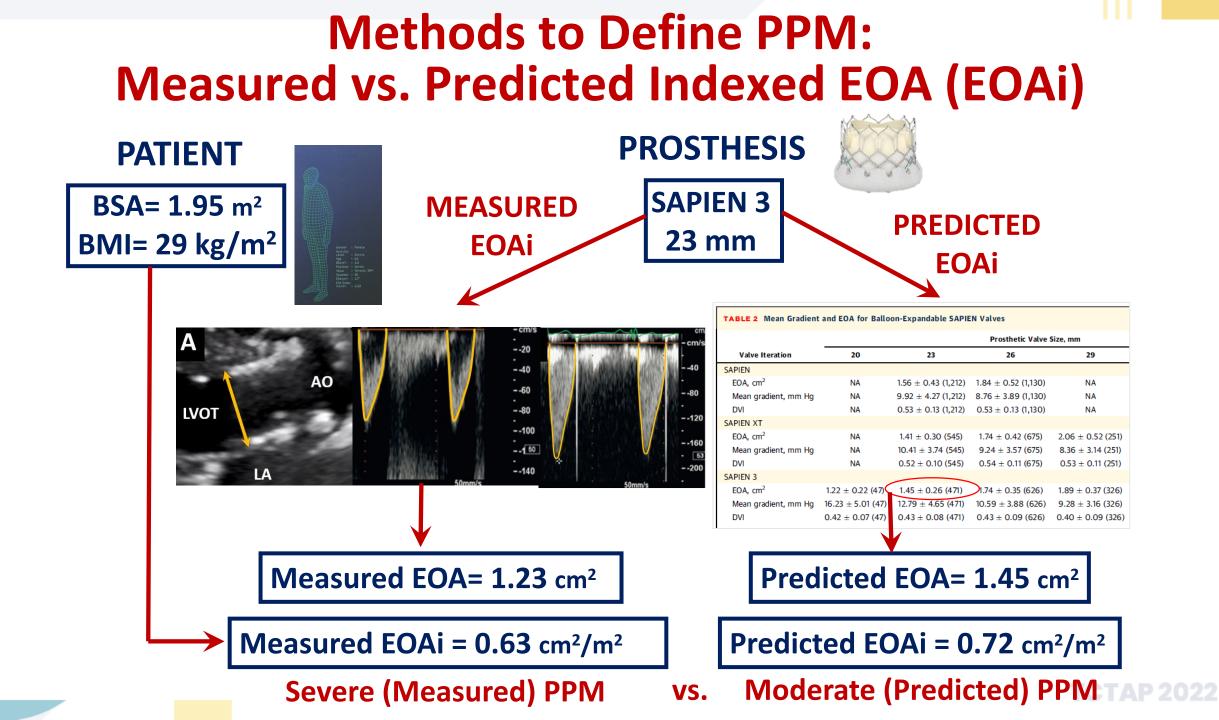
The Problem of Valve Prosthesis-Patient Mismatch

SHAHBUDIN H. RAHIMTOOLA, M.D.

1978 definition of "Mismatch"



Definition of Prosthesis-Patient Mismatch


Prosthesis with normal function but too small for patient's BSA:

Normal EOA but small indexed EOA

High residual gradient following AVR

	None/Mild	Moderate	Severe	
Valve structure and motion	Usually normal	Usually normal	Usually normal	
Indexed EOA (cm ² /m ²)	>0.85	0.85-0.65	<0.65	
Indexed EOA (cm ² /m ²)	>0.70	0.70- <mark>0.60</mark>	< 0.60	VARC-2
in obese patients (BMI ≥30 kg/m ²)		0.70- <mark>0.55</mark>	< 0.55	VARC-3

"Theoretical Concern on PPM clinical Impact?"

Clinical Impact of PPM and Small Annulus on Structural Degeneration of Bioprosthetic Valves

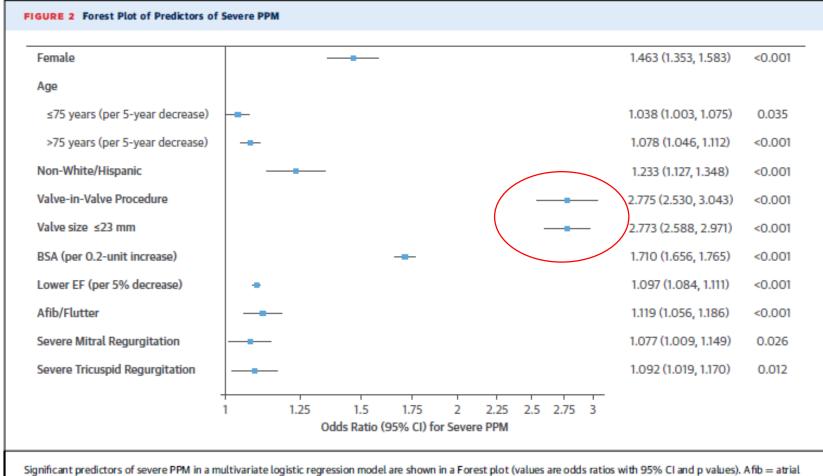
- Small aortic annulus is associated with higher leaflet mechanical stress
- \Rightarrow Leaflet mechanical stress is the main determinant of SVD
- Small aortic annulus is associated with higher risk of severe PPM
 Severe PPM is associated with increased risk of SVD in SAVR

Flameng et al., Circulation, 2010 Salaun et al. Heart 2019

Clinical Impact of PPM: Still Controversial Data

• Some studies showed that PPM after TAVR was associated with increased mortality and adverse cardiac events.

 In contrast, other studies have shown that PPM following TAVR was not associated with an increased risk for mortality and clinical outcomes.

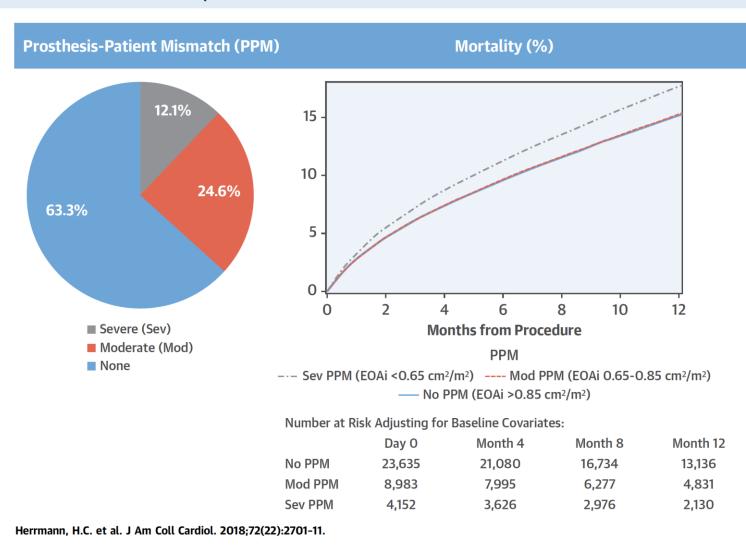

 Long-term data on prognostic impact of PPM after TAVR on SVD is still lacking JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2018 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER VOL. 72, NO. 22, 2018

Prosthesis-Patient Mismatch in Patients Undergoing Transcatheter Aortic Valve Replacement From the STS/ACC TVT Registry

Howard C. Herrmann, MD,^a Samuel A. Daneshvar, MD,^b Gregg C. Fonarow, MD,^b Amanda Stebbins, MPH,^c Sreekanth Vemulapalli, MD,^c Nimesh D. Desai, MD,^a David J. Malenka, MD,^d Vinod H. Thourani, MD,^e Jennifer Rymer, MD,^c Andrzej S. Kosinski, PhD^c

HC Herrmann, J Am Coll Cardiol 2018;72:2701–11

Predictors of severe PPM in TAVR

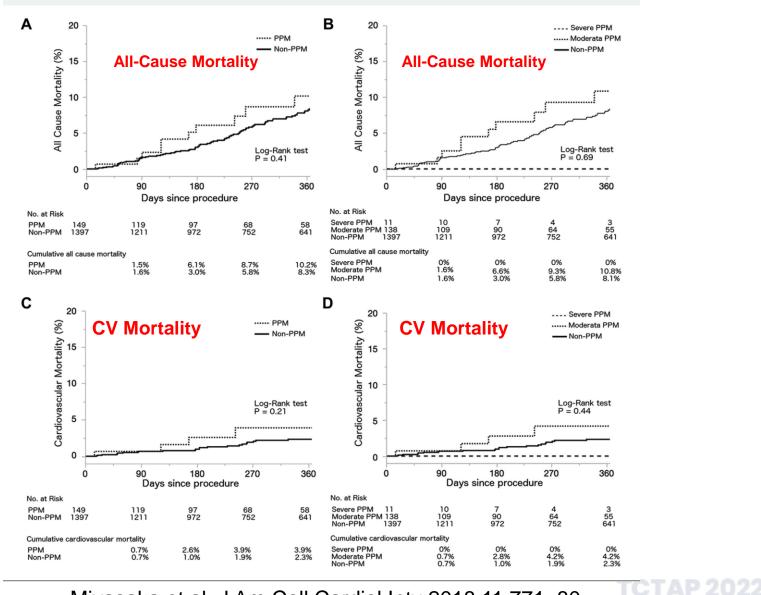

fibrillation; BSA = body surface area; CI = confidence interval; EF = ejection fraction; PPM = prosthesis-patient mismatch.

HC Herrmann, J Am Coll Cardiol 2018;72:2701–11

JACC VOL. 72, NO. 22, 2018 DECEMBER 4, 2018:2701-11 Herrmann et al. Outcomes of PPM Following TAVR

Clinical Impact of PPM (TVT registry, N=62,125)

CENTRAL ILLUSTRATION Incidence and Effect on Survival of Severe Prosthesis-Patient Mismatch After Transcatheter Aortic Valve Replacement



HC Herrmann, J Am Coll Cardiol 2018;72:2701–11

Clinical Impact of PPM (OCEAN-TAVI registry, N=1,558)

FIGURE 3 Time-to-Event Curves for Cumulative All-Cause and Cardiovascular Mortality

In Japanese Cohort, there was no association of the presence or severity of PPM wit increased all-cause mortality and CV mortality.



Miyasaka et al. J Am Coll Cardiol Intv 2018;11:771–80

Known Predictors of PPM

- > Older age
- Female sex
- Diabetes
- Renal failure
- Large BSA
- Small aortic annulus
- Small prosthetic valve size
- SAVR vs. TAVR
- Bioprosthesis vs. mechanical valves in SAVR
- VinV vs. native TAVR
- Balloon expandable vs. self-expanding valves in TAVR

Dayan JACC Img 2016; Tang JACC Intv 2021, Leone JACC Intv 2021

This is more common in Asians rather than in Western patients JACC: ASIA

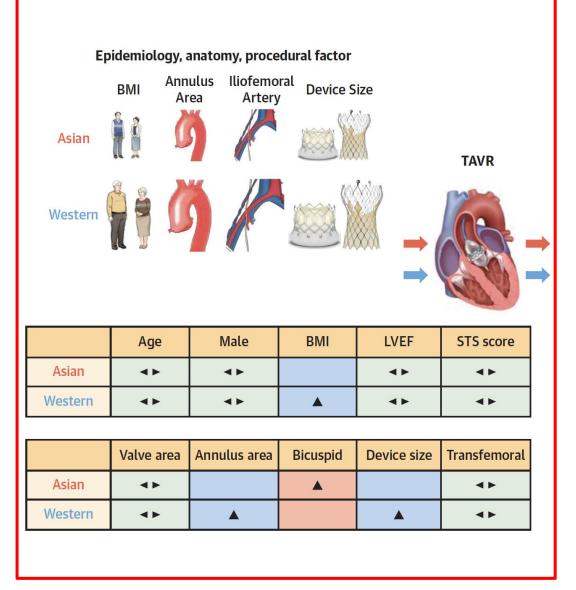
VOL. 1, NO. 3, 2021

© 2021 THE AUTHORS. PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY-NC-ND LICENSE (http://creativecommons.org/licenses/by-nc-nd/4.0/).

STATE-OF-THE-ART REVIEW

Transcatheter Aortic Valve Replacement in Asia

Present Status and Future Perspectives


Cheol Hyun Lee, MD, PнD,^{a,*} Taku Inohara, MD, PнD,^{b,*} Kentaro Hayashida, MD, PнD,^b Duk-Woo Park, MD, PнD^c

ABSTRACT

Over the last decade, based on evidence from multiple randomized clinical trials, transcatheter aortic valve replacement (TAVR) has become the established treatment for patients with symptomatic severe aortic stenosis. Despite the overwhelming expansion of TAVR in Western countries, the initial uptake and widespread adoption of this procedure have been relatively delayed in Asian countries, owing to the high cost of devices; limited local health and reimbursement policies; and lack of specific training/proctoring program, specialized heart team, or dedicated infrastructure. Furthermore, it has not yet been determined whether there are substantial interracial and ethnic differences in the clinical characteristics, comorbidities, and anatomic features, as well as procedural and long-term outcomes, in patients receiving TAVR. In this review, we provide not only a comprehensive look at the current status and outcomes of TAVR in Asian populations compared with those of Western populations but also a perspective on the future of TAVR in Asia. (JACC: Asia 2021;1:279-293) © 2021 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Lee, C.H. et al. JACC: Asia. 2021;1(3):279-293.

CENTRAL ILLUSTRATION Specific Clinical and Anatomic Featur Replacement in Asian Populations

"PPM may be particularly relevant in Asian populations with unique anatomical features such as smaller annular dimensions or smaller valve implant size compared with Western populations"

TCTAP 2022

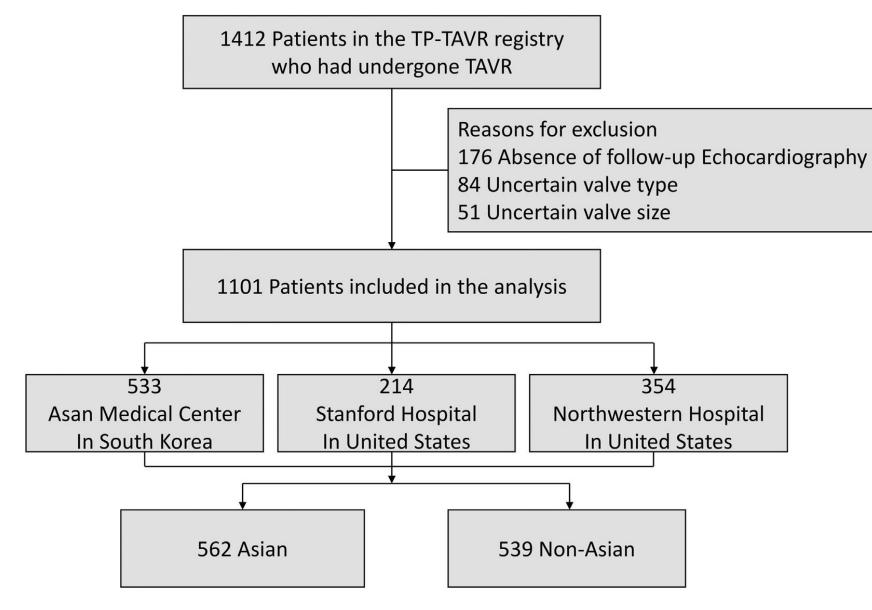
Lee, C.H. et al. JACC: Asia. 2021;1(3):279–293.

VOL. 14, NO. 24, 2021

JACC: CARDIOVASCULAR INTERVENTIONS © 2021 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER

Racial Differences in the Incidence and Impact of Prosthesis-Patient Mismatch After Transcatheter Aortic Valve Replacement

Hanbit Park, MD,^{a,*} Jung-Min Ahn, MD,^{a,*} Do-Yoon Kang, MD,^a Juyong Brian Kim, MD,^b Alan C. Yeung, MD,^b Takeshi Nishi, MD,^b William F. Fearon, MD,^b Eric Page Cantey, MD,^c James D. Flaherty, MD,^c Charles J. Davidson, MD,^c S. Christopher Malaisrie, MD,^c Sehee Kim, PHD,^d Sung-Cheol Yun, PHD,^d Euihong Ko, MD,^a Seung-Ah Lee, MD,^a Dae-Hee Kim, MD,^a Ho Jin Kim, MD,^e Joon Bum Kim, MD,^e Suk Jung Choo, MD,^e Duk-Woo Park, MD,^a Seung-Jung Park, MD^a


ABSTRACT

OBJECTIVES The aim of this study was to compare the incidence and prognostic significance of prosthesis-patient mismatch (PPM) after transcatheter aortic valve replacement (TAVR) according to racial groups.

BACKGROUND PPM after TAVR may be of more concern in Asian populations considering their relatively small annular and valve sizes compared with Western populations.

HB Park an DW Park. J Am Coll Cardiol Intv 2021;14:2670–2681

Study Flow Diagram of TP-TAVR Registry

HB Park an DW Park. J Am Coll Cardiol Intv 2021;14:2670-2681

Baseline Characteristics

TABLE 1 Baseline Characteristics of Patients According to the Presence of PPM and Racial Group

		Asian Group	p		Non-Asian Group				
	Overall (N = 562)	PPM (n = 189)	No PPM (n = 373)	P Value	Overall (N = 539)	PPM (n = 294)	No PPM (n = 245)	P Value	<i>P</i> Value ^a
Demographics and clinical risk factors									
Age, y	80.1 ± 5.6	$\textbf{79.8} \pm \textbf{5.5}$	$\textbf{80.2} \pm \textbf{5.7}$	0.45	$\textbf{79.5} \pm \textbf{9.5}$	$\textbf{78.8} \pm \textbf{9.9}$	$\textbf{80.3} \pm \textbf{8.8}$	0.07	0.22
Male	286 (50.9)	97 (51.3)	189 (50.7)	0.88	310 (57.5)	178 (60.5)	132 (53.9)	0.12	0.03
BMI, kg/m ²	$\textbf{24.0} \pm \textbf{3.6}$	$\textbf{24.6} \pm \textbf{3.4}$	$\textbf{23.7} \pm \textbf{3.7}$	0.007	$\textbf{28.5} \pm \textbf{6.6}$	$\textbf{28.5} \pm \textbf{6.6}$	$\textbf{28.4} \pm \textbf{6.6}$	0.87	< 0.001
BMI \geq 30 kg/m ²	28 (5.0)	4 (2.1)	24 (6.4)	0.03	174 (32.3)	81 (27.6)	93 (38.0)	0.01	< 0.001
BSA, m ²	1.60 ± 0.17	1.58 ± 0.17	$\textbf{1.63} \pm \textbf{0.16}$	< 0.001	$\textbf{1.91} \pm \textbf{0.29}$	$\textbf{1.93} \pm \textbf{0.28}$	1.88 ± 0.30	0.03	< 0.001
SIS score, %	3.3 (2.9-4.9)	3.0 (2.1-4.6)	3.4 (2.4-5.0)	0.12	4.1 (3.0-6.8)	4.2 (3.0-6.5)	4.1 (3.0-7.0)	0.70	<0.001
NYHA functional class III or IV	199 (35.4)	65 (34.4)	134 (35.9)	0.72	294 (54.5)	156 (53.1)	138 (56.3)	0.45	<0.001
Diabetes	297 (52.8)	98 (51.9)	199 (53.4)	0.74	186 (34.5)	108 (36.7)	78 (31.8)	0.23	< 0.001
Hypertension	490 (87.2)	164 (86.8)	326 (87.4)	0.83	445 (82.6)	245 (83.3)	200 (81.6)	0.60	0.03
Prior MI	46 (8.2)	18 (9.5)	28 (7.5)	0.41	14 (2.6)	7 (2.4)	7 (2.9)	0.73	<0.001
Hyperlipidemia	421 (74.9)	146 (77.2)	275 (73.7)	0.36	382 (70.9)	214 (72.8)	168 (68.6)	0.28	<0.001
Current smoker	26 (4.6)	8 (4.2)	18 (4.8)	0.75	64 (11.9)	34 (11.6)	30 (12.2)	0.81	0.132
Prior PCI	154 (27.4)	51 (27.0)	103 (27.6)	0.87	163 (30.2)	96 (32.7)	67 (27.3)	0.182	0.30
Prior CABG	28 (5.0)	13 (6.9)	15 (4.0)	0.14	94 (17.4)	59 (20.1)	35 (14.3)	0.08	<0.001
Prior stroke	76 (13.5)	26 (13.8)	50 (13.4)	0.91	56 (10.4)	29 (9.9)	27 (11.0)	0.66	0.11
Atrial fibrillation	65 (11.6)	23 (12.2)	42 (11.3)	0.75	213 (39.5)	127 (43.2)	86 (35.1)	0.06	<0.001
Peripheral artery disease	18 (3.2)	6 (3.2)	12 (3.2)	0.98	113 (21.0)	64 (21.8)	49 (20.0)	0.62	<0.001
Chronic lung disease	61 (10.9)	17 (9.0)	44 (11.8)	0.31	82 (15.2)	44 (15.0)	38 (15.5)	0.86	0.03
Chronic kidney disease ^b	421 (74.9)	133 (70.4)	288 (77.2)	0.08	158 (29.3)	92 (31.3)	66 (26.9)	0.27	<0.001
End-stage renal disease	21 (3.7)	10 (5.3)	11 (2.9)	0.17	20 (3.7)	14 (4.8)	6 (2.4)	0.16	0.98
Echocardiographic findings									
Bicuspid aortic valve	57 (10.1)	13 (6.9)	44 (11.8)	0.07	25 (4.6)	11 (3.7)	14 (5.7)	0.278	0.001
		0.60 (0.49-0.70)			0.70 (0.59-0.84)	0.70 (0.56-0.80)	0.74 (0.60-0.90)		< 0.001
Mean PG, mm Hg	57 ± 21	57 21	57 ± 21	0.82	45 ± 14	46 ± 15	44 ± 14	0.053	< 0.001
LV ejection fraction, %	58 ± 11	51 ± 12	58 ± 11	0.35	58 ± 13	57 \pm 13	59 \pm 13	0.08	0.48
Moderate to severe AR	107 (19.0)	33 (17.5)	74 (19.8)	0.50	58 (10.8)	30 (10.2)	28 (1 1.4)	0.65	<0.001
Moderate to severe MR	66 (11.7)	27 (14.3)	39 (10.5)	0.18	113 (21.0)	62 (21.1)	51 (20.8)	0.94	<0.001
Moderate to severe TR	34 (6.0)	19 (10.1)	15 (4.0)	0.005	84 (15.6)	49 (16.7)	35 (14.3)	0.45	<0.001
CT findings									
Annular perimeter, mm	75.7 ± 7.5	$\textbf{73.9} \pm \textbf{7.7}$	$\textbf{76.6} \pm \textbf{7.2}$	< 0.001	$\textbf{78.4} \pm \textbf{8.4}$	$\textbf{77.6} \pm \textbf{8.4}$	$\textbf{79.3} \pm \textbf{8.2}$	0.03	< 0.001
Annular area, mm ²	441 ± 87	420 ± 86	451 ± 86	< 0.001	461 ± 95	$\textbf{454} \pm \textbf{95}$	$\textbf{469} \pm \textbf{95}$	0.06	< 0.001

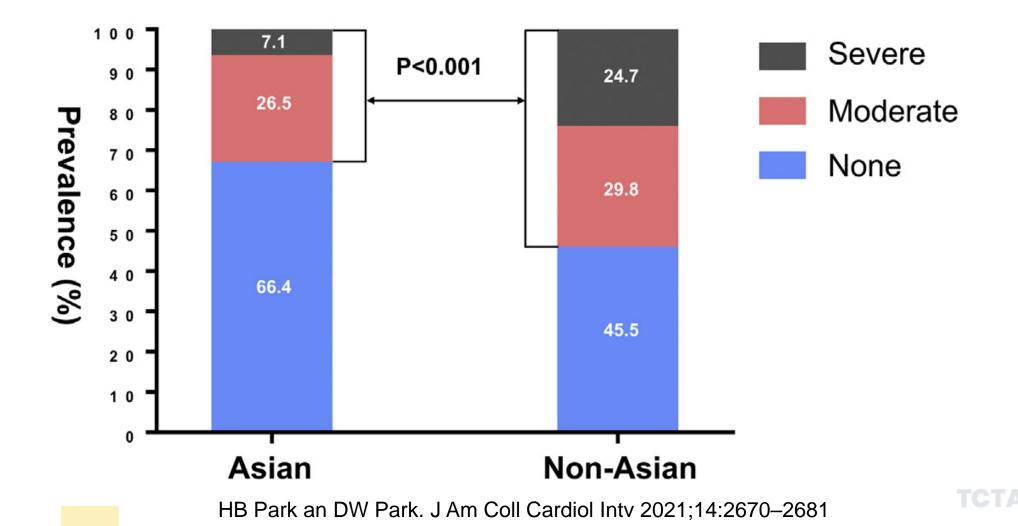
ICTAP 2022

Procedural Characteristics

		Asian Group			Non-Asian Group				
	Overall (N = 562)	PPM (n = 189)	No PPM (n = 373)	P Value	Overall (N = 539)	PPM (n = 294)	No PPM (n = 245)	P Value	/alue P Value
Procedural characteristics									
Procedure type				< 0.001				0.07	0.07
Native	545 (97.0)	175 (92.6)	370 (99.2)		511 (94.8)	274 (93.2)	237 (96.7)		
Valve-in-valve	17 (3.0)	14 (7.4)	3 (0.8)		28 (5.2)	20 (6.8)	8 (3.3)		
Access site				0.91				0.009	0.99
Transfemoral	539 (95.9)	181 (95.8)	358 (96.0)		517 (95.9)	288 (98.0)	229 (93.5)		
Nontransfemoral	23 (4.1)	8 (4.2)	15 (4.0)		22 (4.1)	6 (2.0)	16 (6.5)		
Valve type				0.55				0.27	0.12
Balloon expandable	466 (82.9)	151 (79.9)	315 (84.5)		465 (86.3)	258 (87.8)	207 (84.5)		
SAPIEN XT	43 (7.7)	11 (5.8)	32 (8.6)		0 (0.0)	0 (0.0)	0 (0.0)		
APIEN 3	423 (75.3)	140 (74.1)	283 (75.9)		465 (86.3)	258 (87.8)	207 (84.5)		
Self-expandable	96 (17.1)	38 (20.1)	58 (15.5)		74 (13.7)	36 (12.2)	38 (15.5)		
CoreValve	9 (1.6)	3 (1.6)	6 (1.6)		13 (2.4)	4 (1.4)	9 (3.7)		
Evolut R	75 (13.3)	29 (15.3)	46 (12.3)		56 (10.4)	29 (9.9)	27 (11.0)		
Evolut PRO	7 (1.2)	4 (2.1)	3 (0.8)		5 (0.9)	3 (1.0)	2 (0.8)		
Lotus	5 (0.9)	2 (1.1)	9 (0.8)		0 (0.0)	0 (0.0)	0 (0.0)		
Size of the SAPIEN series				<0.001				0.08	0.80
20 mm	8 (1.4)	5 (2.6)	3 (0.8)		17 (3.2)	13 (4.4)	4 (1.6)		
23 mm	142 (25.3)	61 (32.3)	81 (21.7)		149 (27.6)	87 (29.6)	62 (25.3)		
26 mm	233 (41.5)	67 (35.4)	166 (44.5)		194 (36.0)	104 (35.4)	90 (36.7)		
29 mm	81 (14.4)	17 (9.0)	64 (17.2)		105 (19.5)	54 (18.4)	51 (20.8)		
Size of the CoreValve series				0.18				0.06	0.02
23 mm	13 (2.3)	8 (4.2)	5 (1.3)		11 (2.0)	8 (2.7)	3 (1.2)		
26 mm	45 (8.0)	15 (7.9)	30 (8.0)		24 (4.5)	9 (3.1)	15 (6.1)		
29 mm	27 (4.8)	12 (6.3)	15 (4.0)		27 (5.0)	17 (5.8)	10 (4.1)		
≥31 mm	7 (1.2)	2 (1.0)	5 (1.3)		12 (2.2)	2 (0.7)	10 (4.1)		

CTAP 2022

Echo Hemodynamics: Ratio Fallacy?

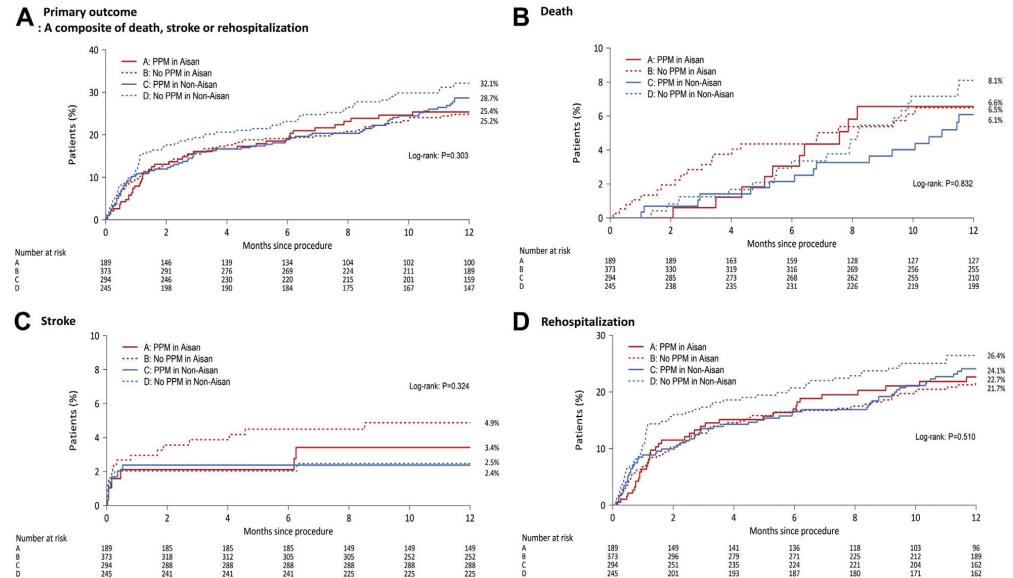

TABLE 3 Postprocedural Echocardiographic Data and Pattern of PPM According to Racial Groups

	Asian Group			Non-Asian Group					
	Overall (N = 562)	PPM (n = 189)	No PPM (n = 373)	P Value	Overall (N = 539)	PPM (n = 294)	No PPM (n = 245)	P Value	<i>P</i> Value ^a
LV ejection fraction, %	59 ± 9	59 ± 9	60 ± 9	0.16	58 ± 12	57 ± 12	59 ± 12	0.04	0.02
EOA, cm ²	$\textbf{1.50} \pm \textbf{0.37}$	1.18 ± 0.18	$\textbf{1.67} \pm \textbf{0.33}$	<0.001	$\textbf{1.52} \pm \textbf{0.49}$	$\textbf{1.22} \pm \textbf{0.25}$	$\textbf{1.88} \pm \textbf{0.45}$	<0.001	0.56
Indexed EOA, cm ² /m ²	0.94 ± 0.22	$\textbf{0.73} \pm \textbf{0.10}$	$\textbf{1.05} \pm \textbf{0.18}$	<0.001	$\textbf{0.80} \pm \textbf{0.25}$	$\textbf{0.63} \pm \textbf{0.12}$	$\textbf{1.01} \pm \textbf{0.20}$	<0.001	< 0.001
Moderate PPM ^a Severe PPM ^a	149 (26.5) 40 (7.1)	149 (78.8) 40 (21.2)	0 (0.0) 0 (0.0)	NA NA	161 (29.8) 144 (24.7)	161 (54.8) 133 (45.2)	0 (0.0) 0 (0.0)	NA NA	NA NA
Peak velocity, m/s	$\textbf{2.5} \pm \textbf{0.5}$	$\textbf{2.7} \pm \textbf{0.5}$	$\textbf{2.4} \pm \textbf{0.4}$	<0.001	$\textbf{2.4} \pm \textbf{0.5}$	$\textbf{2.5}\pm\textbf{0.5}$	$\textbf{2.2}\pm\textbf{0.5}$	<0.001	< 0.001
Pressure gradient, mm Hg	13 ± 5	16 ± 6	12 ± 4	<0.001	12 ± 6	14 ± 6	10 ± 4	<0.001	< 0.001
≥20 ≥40	68 (12.1) 1 (0.2)	43 (22.8) 1 (0.5)	25 (6.7) 0 (0.0)	<0.001 0.34	47 (8.7) 0 (0.0)	41 (13.9) 0 (0.0)	6 (2.4) 0 (0.0)	<0.001 >0.99	0.70 0.51
Paravalvular leakage, moderate to severe	20 (3.6)	4 (2.1)	16 (4.3)	0.19	1 (0.2)	0 (0.0)	1 (0.4)	0.46	0.45
Moderate to severe MR	28 (5.0)	10 (5.3)	18 (4.8)	0.81	26 (4.8)	13 (4.4)	13 (5.3)	0.63	0.28
Moderate to severe TR	26 (4.6)	9 (4.8)	17 (4.6)	0.91	34 (6.3)	19 (6.5)	15 (6.1)	0.87	0.51

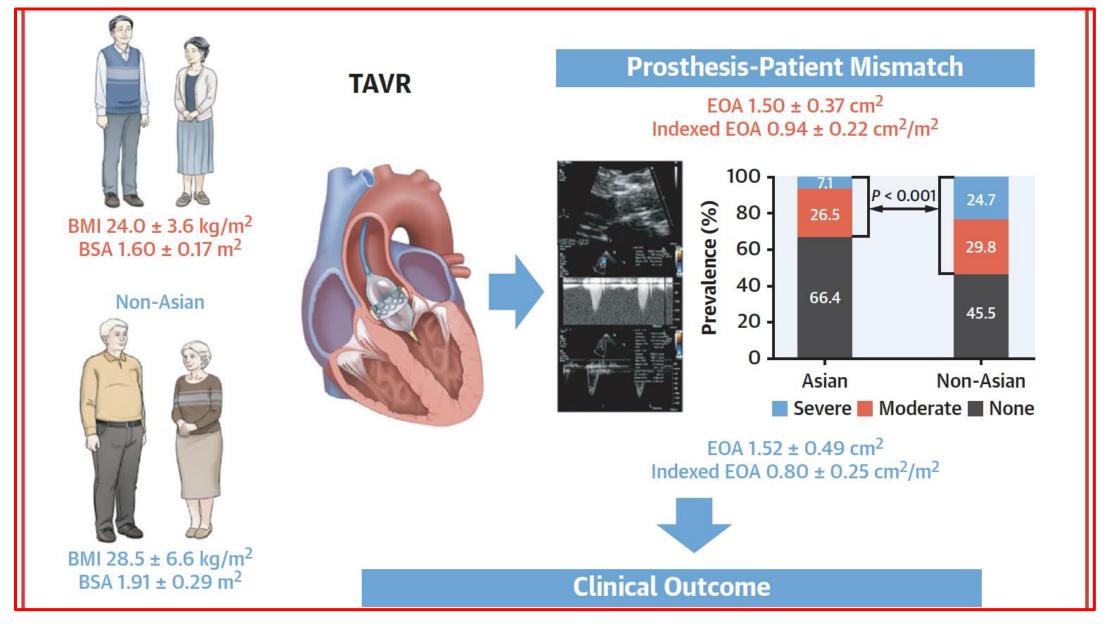
HB Park an DW Park. J Am Coll Cardiol Intv 2021;14:2670–2681

Incidence of PPM According to the VARC-2 Criteria

Prosthesis-Patient Mismatch

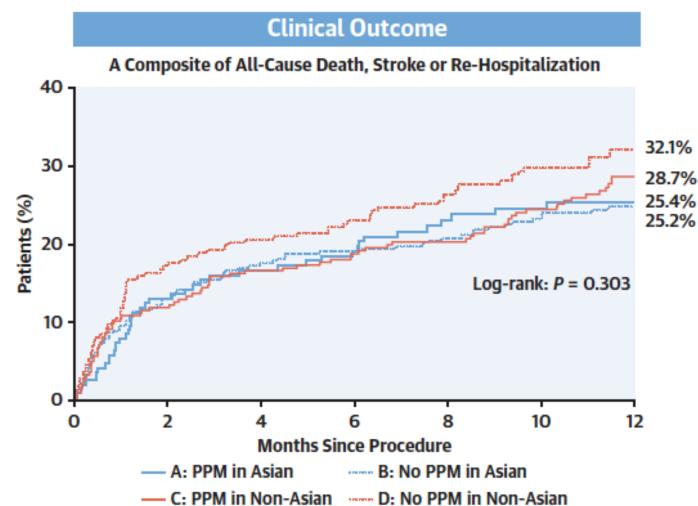


Independent Predictors of PPM


TABLE 4 Multivariate Analyses for Independent Predictors of Moderate or Severe Prosthesis-Patient Mismatch

	Overall Group (N = 1,101)		Asian Group (n	= <mark>562)</mark>	Non-Asian Group (n = 539)	
	OR (95% CI)	P Value	OR (95% CI)	P Value	OR (95% CI)	P Value
Race: Asian vs non-Asian (referent)	0.43 (0.31-0.60)	< 0.001	_	_	_	_
Age ≥80 y	0.81 (0.61-1.06)	0.12	0.98 (0.66-1.46)	0.92	0.66 (0.45-0.98)	0.04
BMI, kg/m ²	1.03 (1.01-1.05)	0.046	1.06 (1.01-1.12)	0.03	1.00 (0.97-1.03)	0.87
BSA, per 0.1 m ²	1.43 (1.30-1.56)	< 0.001	1.56 (1.36-1.79)	< 0.001	1.37 (1.22-1.53)	< 0.001
Prior CABG	1.52 (1.01-2.30)	0.047	1.71 (0.75-3.91)	0.21	1.44 (0.88-2.45)	0.14
Atrial fibrillation or flutter	1.26 (0.92-1.72)	0.15	0.90 (049-1.64)	0.73	1.47 (1.00-2.15)	0.05
Chronic kidney disease	0.97 (0.73-1.30)	0.85	0.74 (0.47-1.16)	0.18	1.27 (0.85-1.89)	0.24
Aortic valve area	0.27 (0.12-0.60)	0.001	0.22 (0.05-1.02)	0.053	0.29 (0.11-0.75)	0.01
Mean pressure gradient, per 10 mm Hg	0.99 (0.91-1.07)	0.79	0.94 (0.84-1.05)	0.29	1.09 (0.95-1.26)	0.23
Bicuspid aortic valve	0.67 (0.40-1.13)	0.13	0.79 (0.40-1.57)	0.50	0.63 (0.27-1.45)	0.28
LV ejection fraction $\leq 40\%$	0.76 (0.49-1.18)	0.22	0.76 (0.39-1.48)	0.43	0.80 (0.44-1.46)	0.47
Moderate to severe TR at baseline	1.29 (0.84-1.99)	0.24	2.52 (1.16-5.46)	0.02	0.97 (0.58-1.63)	0.91
Valve perimeter	0.94 (0.88-1.01)	0.10	0.97 (0.87-1.09)	0.64	0.94 (0.86-1.02)	0.11
Valve area, per 100 mm ²	1.22 (0.67-2.23)	0.52	0.81 (0.30-2.21)	0.68	1.45 (0.70-2.97)	0.31
Balloon-expandable THV	1.37 (0.94-2.02)	0.11	1.31 (0.76-2.26)	0.32	1.60 (0.92-2.78)	0.10
Postdilation performed	0.74 (0.55-0.99)	0.049	0.87 (0.58-1.33)	0.53	0.72 (0.46-1.12)	0.14

Primary Composite Outcome

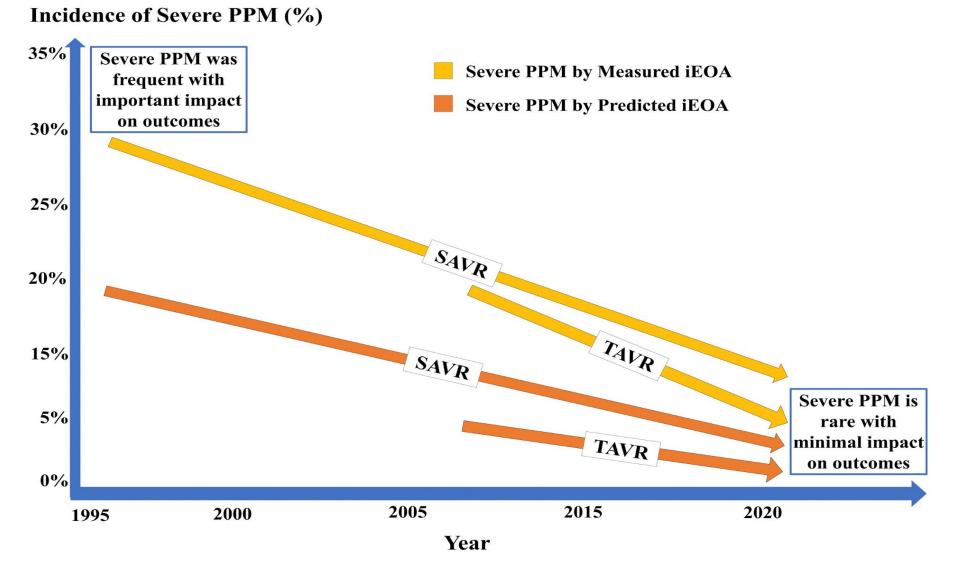

Inter-Racial Disparity of PPM Incidence

HB Park an DW Park. J Am Coll Cardiol Intv 2021;14:2670–2681

Inter-Racial Disparity of PPM Impact

HB Park an DW Park. J Am Coll Cardiol Intv 2021;14:2670–2681

Key Lessons from the TP-TAVR registry


• In this multi-racial, multi-national registry, Asian patients had a significantly lower incidence of PPM than did Western patients.

• Several race-specific predictors for PPM were identified.

 Regardless of racial group, the 1-yr risk for the primary composite of death, stroke, or rehospitalization and mortality was similar between the PPM and no-PPM groups.

HB Park, DW Park et al. J Am Coll Cardiol Intv 2021;14:2670–2681

PPM in the TAVI Era: Is it Becoming Obsolete?

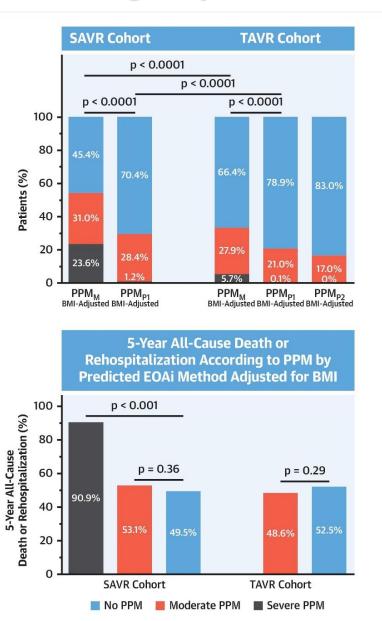
Ternacle et al. JACC Intv 2021

Summary: PPM - Still Unknown Issue

- The definition of PPM is arbitrary/controversial; an accurate definition is required to correctly classify patients with hemodynamic obstruction and properly assess the implications of PPM.
- PPM pathologic finding or just physiologic phenomenon
- PPM is it the ratio fallacy (mainly driven BSA)?
- Modifiable or non-modifiable factors?
- PPM key determinant for valve type choice? (self-expandable with larger EOA >> balloon-expandable)
- Most importantly, it is still uncertain whether PPM may impair TAVR durability and how this phenomenon is applied in decision-making of valve choice and risk stratification.

Supplementary

Incidence and Impact of PPM by Measured and Predicted EOAi Methods in PARTNER 2A Trial and S3i Registry


INCIDENCE OF PROSTHESIS-PATIENT MISMATCH

- 1- Incidence of severe PPM is markedly lower with predicted vs. measured EOAi
- 2- TAVR has lower incidence of severe PPM compared to SAVR, regardless of the EOAi method used to identify PPM.

IMPACT OF PROSTHESIS-PATIENT MISMATCH ON OUTCOMES

- 1- In SAVR, severe PPM by the predicted EOAi method is rare but independently associated with worse outcomes.
- 2- In TAVR, severe PPM by the predicted EOAi method is absent
- 3- In both SAVR and TAVR, moderate PPM is not associated with worse outcomes

Ternacle, J. et al. J Am Coll Cardiol Intv. 2021;14(13):1466-77.

2022

Study / Trial	Definition of PPM	Incidence of Severe PPM	Impact on Mortality
Meta-Analysis – SAVR (Head 2012)	Predicted	10 %	HR: 1.84*
STS Registry – SAVR (Fallon 2018)	Predicted	11 %	HR: 1.19*
PARTNER 1 – SAVR vs. TAVR (Pibarot 2014)	Measured	28 vs. 20 %*	HR: 1.78* vs. 0.52
CORE VALVE HR – SAVR vs. TAVR (Zorn 2015)	Measured	21 vs. 7 %*	HR: 1.60* (SAVR+TAVR)
PARTNER 2A-S3i – SAVR vs. TAVR (Ternacle 2021)	Predicted/Measured	24 vs. 6 %*	HR: 1.34* vs. 1.27
PARTNER 3 – SAVR vs. TAVR (Pibarot 2020)	Measured	6 vs. 5 %	HR: 1.31 (SAVR+TAVR)
TVT Registry – TAVR (BE and SE) (Herrmann 2018)	Measured	12 %	HR: 1.19*
TVT Registry – TAVR (SE only) (Tang 2021)	Measured	5.3 %	HR: 1.00 (savr+tavr)
TAVI – SMALL Registry (Leone 2021)	Measured	9.4 %	HR: 4.27*

.