

April 27–29, 2022 ICTAP 2022 will be held on April 27–29, 2022 online, Asia's the most comprehensive Interventional cardiology program featuring Catonary, Endowscular, Imaging & physiology, Pharmacotherapy, Structural Heart Disease and Yolve.

FAVOR III China

A Sham-Controlled Randomized Trial Comparing QFR-Guided and Angiography-Guided PCI

Bo Xu, Shengxian Tu, Lei Song, Zening Jin, Bo Yu, Guosheng Fu, Yujie Zhou, Jian'an Wang, Yundai Chen, Jun Pu, Lianglong Chen, Xinkai Qu, Junqing Yang, Xuebo Liu, Lijun Guo, Chengxing Shen, Yaojun Zhang, Qi Zhang, Hongwei Pan, Xiaogang Fu, Jian Liu, Yanyan Zhao, Javier Escaned, Yang Wang, William F. Fearon, Kefei Dou, Ajay J. Kirtane, Yongjian Wu, Patrick W. Serruys, Weixian Yang, William Wijns, Changdong Guan, Martin B. Leon, Shubin Qiao, Gregg W. Stone

FAVOR III China Study Group

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

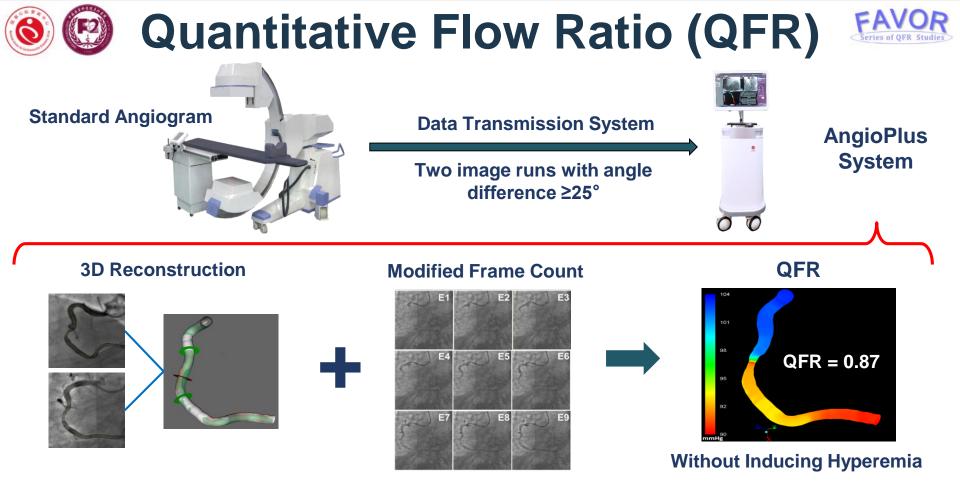
Grant/Research Support

Grant/Research Support Grant/Research Support

Company

Beijing Municipal Science and Technology Commission

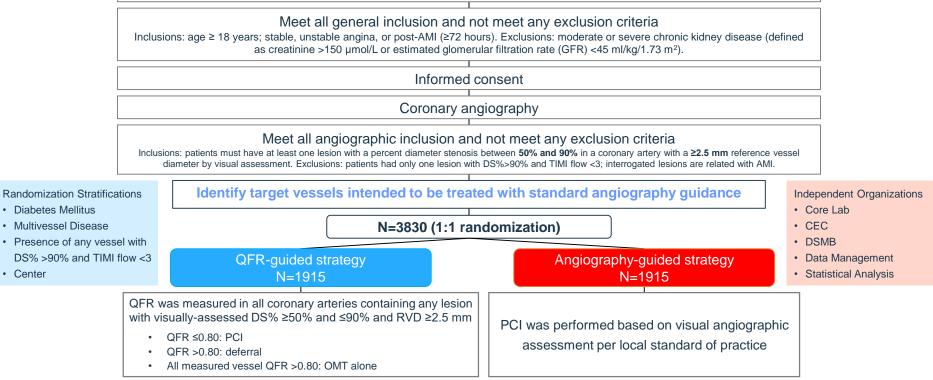
Chinese Academy of Medical Sciences


National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital

Background

- Compared with visual angiographic assessment, pressure wire-based physiological measurement more accurately identifies flow-limiting lesions
- Nonetheless, this method is largely underused in practice due to prolonged procedural time, potential complications from pressure wire instrumentation, side effects from hyperemic agents, and costs
- Quantitative flow ratio (QFR), derived from 3D coronary artery reconstruction and fluid dynamics computations from the angiogram, enables online estimation of FFR without the use of a pressure wire or pharmacologic agents to induce hyperemia
- Prior studies have demonstrated the feasibility and accuracy of online QFR assessment compared with pressure wire-based FFR measurement
- Whether lesion selection for PCI using a QFR-guided strategy might improve outcomes compared with a standard angiography-guided strategy is unknown

Tu S, et al. JACC Cardiovasc Interv 2016; Xu B, et al. J Am Coll Cardiol 2017.


Center

Study Design

Investigator-Initiated, Multicenter, Sham-Controlled Blinded Randomized Trial

Patients with coronary artery disease scheduled for coronary angiography

Imaging core lab analysis; clinical follow-up at 1 month, 6 months, 1, 2, 3, 4, and 5 years; EQ-5D guestionnaires collected at 1, 6, and 12 months

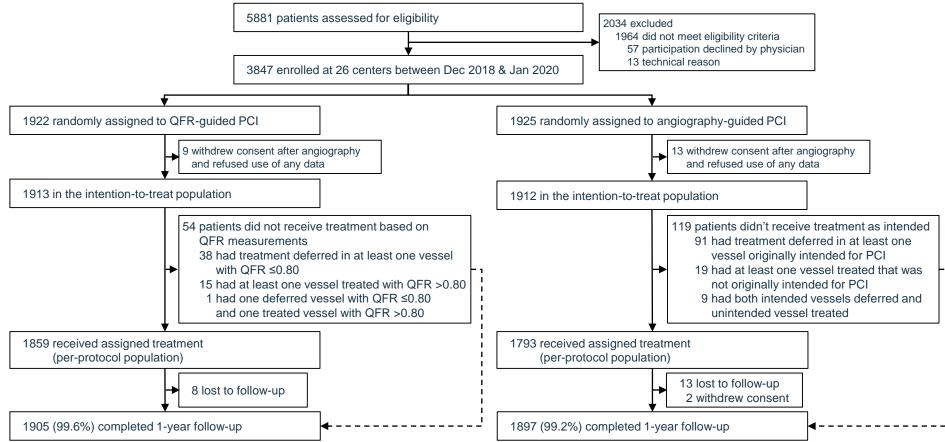
ClinicalTrial.gov Identifier: NCT03656848 Song L, et al. Am Heart J 2020.

Endpoints

Primary Endpoint:

1-year rate of major adverse cardiac events (MACE), defined as the composite of death from any cause, MI, or ischemia-driven revascularization

Major Secondary Endpoint:

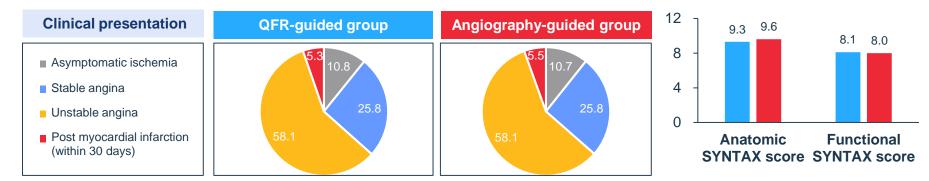

1-year rate of MACE excluding peri-procedural MI arising from the index or planned staged procedures

Other Secondary Endpoints:

- MACE at 1 month, 6 months, 2 years, and 3 years
- Death (cardiovascular, non-cardiovascular, and undetermined) at 1 month, 6 months, 1 year, 2 years, and 3 years
- MI (peri-procedural and non-procedural) at 1 month, 6 months, 1 year, 2 years, and 3 years
- Repeat revascularization (ischemia driven and non-ischemia driven) at 1 month, 6 months, 1 year, 2 years, and 3 years
- Target vessel revascularization (ischemia driven and non-ischemia driven) at 1 month, 6 months, 1 year, 2 years, and 3 years
- Definite/probable stent thrombosis (acute, subacute, late, and very late according to ARC-2 definition)
- PCI strategy changes following QFR and 3D-QCA
- Cost-effectiveness and quality-of-life outcomes at 1 month, 6 months, and 1 year

Patient Flow

Xu B, et al. Lancet 2021.

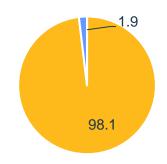

Baseline Characteristics (i)

	QFR-guided group (N=1913)	Angiography-guided group (N=1912)
Age, years	62.7 ± 10.1	62.7 ± 10.2
Male sex	70.5%	70.6%
Body mass index, kg/m ²	25.1 (22.9, 27.0)	24.7 (22.7, 27.0)
Diabetes mellitus	33.9%	33.8%
Hypertension	66.4%	65.5%
Hypercholesterolemia	38.1%	38.1%
Current smoker	30.0%	29.7%
Family history of coronary artery disease	7.7%	7.8%
Previous myocardial infarction	9.4%	9.4%
Previous percutaneous coronary intervention	25.4%	24.4%
Previous stroke	9.6%	9.2%
Peripheral artery disease	2.9%	3.7%

Baseline Characteristics (ii)

	QFR-guided group (N=1913)	Angiography-guided group (N=1912)
Estimated glomerular filtration rate, ml/min/1.73m ²	70.3 (58.4, 83.4)	70.0 (58.0, 83.9)
Left ventricular ejection fraction, %	63.0 (61.0, 66.0)	63.0 (60.0, 66.0)
Multivessel disease	53.5%	54.6%
Any vessel with one or more lesions with diameter stenosis >90% and TIMI flow <3	8.9%	9.5%

Online QFR Assessment



	QFR-guided group (N=1913)
Vessels eligible for online QFR assessment	2727
Vessels with online QFR calculated	99.9%
Mean online QFR calculation time per patient, min	3.9 ± 1.4
Online QFR value	0.70 ± 0.16

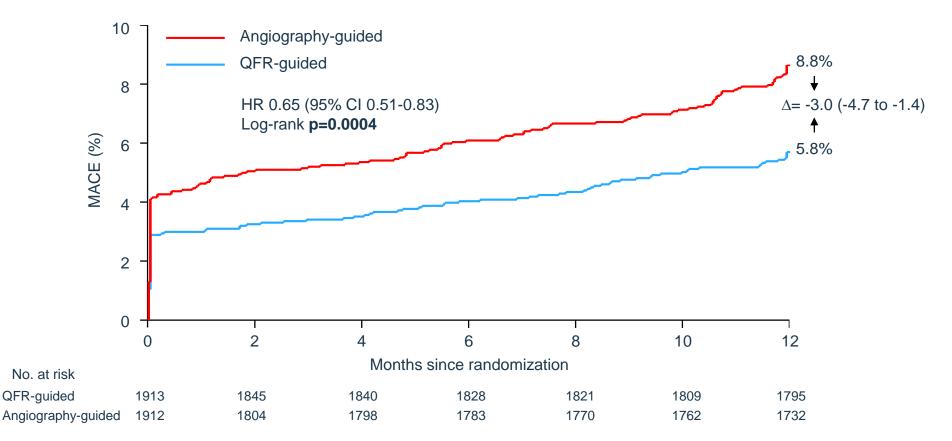
Vessels with online QFR ≤0.80 75.2% (2048/2725)

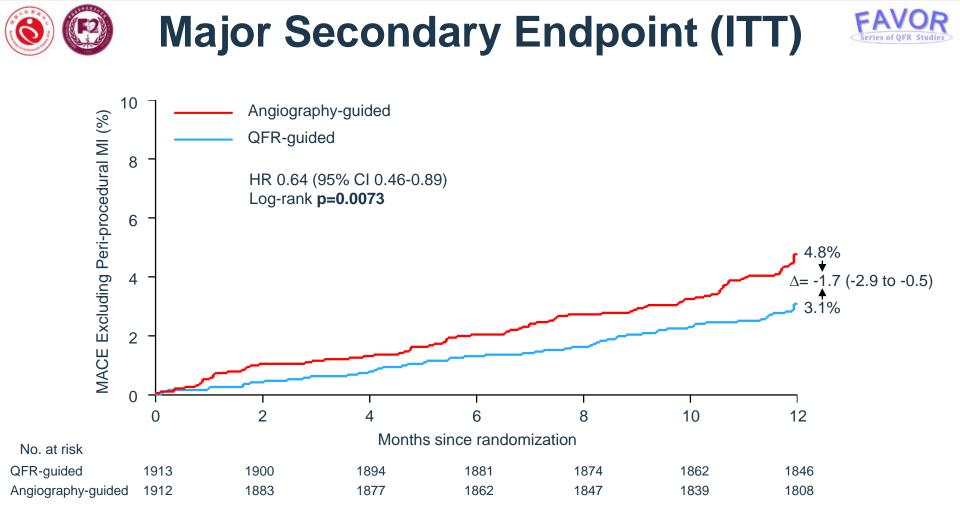
Not treated

How QFR Guidance Changed the Strategy

Vessels intended to be treated pre randomization	QFR-guided group N=2503	Angiography- guided group N=2559	Vessels actually treated of those originally intended	QFR-guided group N=2112	Angiography- guided group N=2449
 LM, p=0.46 LAD, p=0.069 LCX, p=0.084 RCA, p=0.80 	25.2% 20.9% 52.6%	25.5% 22.9%	 LM, p=0.62 LAD, p=0.0007 LCX, p=0.015 RCA, p=0.14 	23.2% 19.8% 55.6%	25.1% 22.7% 50.6%

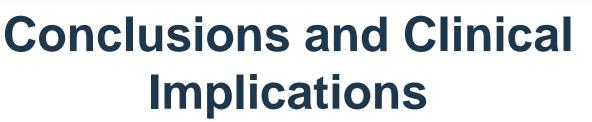
	QFR-guided group	Angiography-guided group	p value
Vessels actually treated of those originally intended	84.4% (2112/2503)	95.7% (2449/2559)	<0.0001
Patients with intended vessel deferral or unintended vessel treatment	23.3% (445/1913)	6.2% (119/1912)	<0.0001
Deferral (non-treatment) of at least one vessel originally intended for PCI	19.6% (375/1913)	5.2% (100/1912)	<0.0001
Treatment of at least one vessel not originally intended for PCI	4.4% (85/1913)	1.5% (28/1912)	<0.0001


Key Procedural Results



	QFR-guided group (N=1913)	Angiography-guided group (N=1912)	p value
PCI performed	90.5%	99.1%	<0.0001
Number of stents placed per patient	1.45 ± 1.02	1.58 ± 0.97	<0.0001
Use of intravascular imaging	6.2%	6.3%	0.89
Contrast medium used per patient, ml	163.0 ± 75.6	169.7 ± 74.2	0.0060
Fluoroscopy time, min	14.1 ± 8.0	14.9 ± 7.4	0.0013
Procedure time, min	53.7 ± 30.4	59.4 ± 30.4	<0.0001
Adjusted procedure time, min	44.6 ± 28.8	49.5 ± 30.2	<0.0001
PCI lesion success	99.0%	99.3%	0.38
Residual anatomic SYNTAX score	2.4 ± 3.6	2.4 ± 4.0	0.49
Residual functional SYNTAX score	0.7 ± 2.3	1.0 ± 2.8	<0.0001
Residual functional SYNTAX score=0	88.1%	82.2%	<0.0001

Primary Endpoint (ITT)



One-Year Clinical Outcomes

	QFR-guided group (N=1913)	Angiography- guided group (N=1912)	Hazard ratio (95% CI)	p value
Primary endpoint	5.8%	8.8%	0.65 (0.51-0.83)	0.0004
Death from any cause	0.7%	0.5%	1.44 (0.62-3.37)	0.40
Myocardial infarction	3.4%	5.7%	0.59 (0.44-0.81)	0.0008
Ischemia-driven revascularization	2.0%	3.1%	0.64 (0.43-0.96)	0.031
Major secondary endpoint	3.1%	4.8%	0.64 (0.46-0.89)	0.0078
Other secondary endpoints				
Cardiovascular death	0.5%	0.4%	1.28 (0.48-3.44)	0.62
Peri-procedural myocardial infarction	2.9%	4.2%	0.69 (0.49-0.97)	0.033
Non-procedural myocardial infarction	0.5%	1.6%	0.33 (0.16-0.68)	0.0025
Any revascularization	2.6%	3.5%	0.73 (0.50-1.05)	0.089
Target vessel revascularization	1.2%	1.3%	0.88 (0.50-1.56)	0.66
Stent thrombosis, definite or probable	0.2%	0.3%	0.50 (0.12-1.99)	0.33

- In the present multicenter, randomized, sham-controlled trial, a QFR-guided vessel and lesion selection strategy improved 1-year clinical outcomes compared with standard angiography guidance in patients undergoing PCI
 - The benefits were due both to fewer procedural complications and superior long-term results compared with standard angiography guidance, with less MIs and repeat revascularization procedures
- The simplicity and safety of QFR compared with wire-based physiological measurements should facilitate the adoption of physiologic lesion assessment into routine clinical practice

