TCTAP 2022

Periprocedural Myocardial Infarction or Injury in Novel (Low-Speed Following High-Speed) Versus Conventional (High-Speed) Rotational Atherectomy Technique for Heavily Calcified Coronary Artery Lesions The Primo-Rota Pilot Study

> Mahesh Gurung, MD Police General Hospital, Thailand

Disclosure

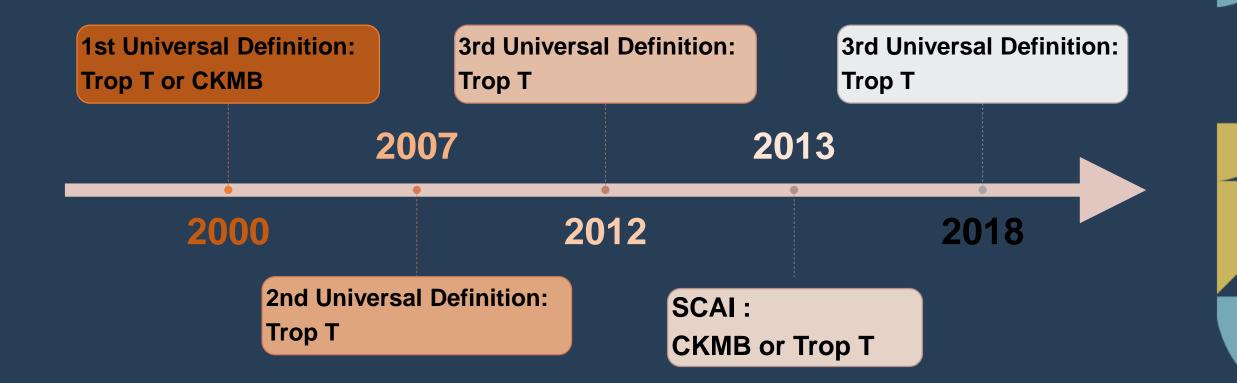
• I do not have potential conflict of interest

Background

 The current best practices recommendations for RA has led to substantial improvements in procedural safety and a reduced rate of associated complications

Kern, M. J. & Seto, Arnold, H. *Interventional Cardiology Review third edition*. (lippincott williams and wilkins, 2018).

CTAP 2022


Complications of Rotational Atherectomy in the Drug-Eluting Stent Era

Series	Year	N	Death, %	Myocardial Infarction, %	Dissection, %	Perforation, %	Slow-Flow / No-Reflow, %
Kawamoto et al65	2016	1176	0.6	7.4	7.0	1.0	1.1
ROTAXUS trial ²⁰	2013	120	1.7	1.7	3.3	1.7	0.0
Abdel-Wahab et al66	2013	205	1.5	2.4	4.4	0.5	2.0
Naito et al ⁶⁷	2012	233	0.0	1.3	1.7	0.4	
Benezet et al ⁶⁸	2011	102	1.0	1.0	PMI incident = 1 - 19.8%		- 19.8%
Dardas et al ⁶⁹	2011	184	0.0				
Garcia de Lara et al ⁷⁰	2010	50	4.0	14.0	2.0	2.0	0.0
Rathore et al ⁷¹	2010	391	1.0	6.9	5.9	2.0	2.6
Vaquerizo et al ⁷²	2010	63	0.0	3.2			
Furuichi et al ⁷³	2009	95	0.0	3.2	2.1	1.1	1.1
Clavijo et al ⁷⁴	2006	81	0.0	19.8	1.9		

ROTAXUS indicates Rotational Atherectomy Prior to TAXUS Stent Treatment for Complex Native Coronary Artery Disease.

Circ Cardiovasc Interv. 2019;12:e007448.

Evolution of Definitions of Periprocedural MI

J Am Heart Assoc. 2014;3:e001086 doi: 10.1161/JAHA.114.001086 Circulation: Cardiovascular Interventi

ORIGINAL ARTICLE

Prognostic Impact of P Myocardial Infarction ir Elective Percutaneous C

BACKGROUND: The magnitude of prognostically reli injury after percutaneous coronary interventions remain defined. The Society for Cardiovascular Angiography (SCAI) proposed marked biomarker elevations to defi myocardial infarction (PMI). These consensus-based th been validated in the era of high-sensitivity cardiac tre to assess the prognostic impact of SCAI-defined PMI. progn

European Heart Journal (2018) 0. 1-10 European Society doi:10.1093/eurhearti/ebx799 of Cardiology

Periprocedural myocardial infarction and injury in elective coronary stenting

Michel Zeitouni¹, Johanne Silvain¹*, Paul Guedeney¹, Mathieu Kerneis¹, Yan Yan², Pavel Overtchouk¹, Olivier Barthelemy¹, Marie Hauguel-Moreau¹, Rémi Choussat¹, Gérard Helft¹, Claude Le Feuvre¹, Jean-Philippe Collet¹, and Gilles Montalescot¹; for the ACTION Study Group

Department of Cardiology, ACTION Study Group, Sorbonne Universitie - Univ Paris 06 (UPMC), INSERM UMRS 1166, Institut de Cardiologie, Höpital Pitié-Salpätrière (AP-HP), Burvau 2-278, 47-83 bld de l'Hispital, 75013 Paris, France; and "Department of Cardiology, Emergency and Critical Care Genter; Beijing Anahen Hospital, Gapital Medical. University, Anahen Rd, Chaoyang Qu, 10.0029 Beijing, China

Received 9 September 2017; restred 17 October 2017; editorial decision 20 December 2017; acapted 21 December 2017

To assess the incidence, risk factors and prognosis of periprocedural myocardial infarction (MI) and myocardial injury in patients undergoing elective percutaneous coronary intervention (PCI).

93.7 %

91.3 %

86.5 %

electiv PMI as an independent predictor of 1-year mortality with 4-fold higher METI electiv center risk in post PCI MACE postp nonel in pat all-cau

leading to acute coronary thrombotic occlusion (Type 1 MI), stroke

CLINICAL RESEARCH

Interventional cardiology

Α

No. at risk

multivariable analyses, patients with SCAI-defined PN a higher risk of 1-year mortality (12.9% versus 2.5%) ratio 4.10, 95% CI 2.51-6.68; P<0.001) as well as ca (11.4% versus 2.1%, adjusted hazard ratio 4.21, 959 P<0.001). Based on receiver operating characteristics prognostic threshold of hs-cTnT was >10×URL, obser patients. This threshold showed lower specificity (85.) but higher sensitivity (25.4% versus 8.2%) and better for prediction of 1-year mortality compared with the value of troponin.

CONCLUSIONS: In patients undergoing elective perc interventions, SCAI-defined PMI emerged as an indep specific, but insensitive predictor of 1-year mortality. between sensitivity and specificity was observed at a hs-cTnT (10x URL) in this cohort.

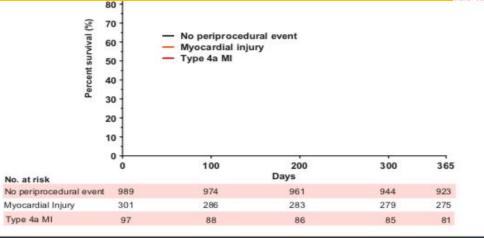
by ischaemic events (3.2% vs. 0.6%, HR 5.9, 95% CI 2.9-20; P<0.0001). At 1-year, the risk of ischemic events remained higher in the periprocedural MI and myocardial injury group (adjHR=1.7, 95% CI 1.1-2.6; P=0.004). Periprocedural MI and injury are frequent complications of elective PCI associated with an increased rate of

cardiovascular events at 30 days and 1 year.

Periprocedural myocardial infarction • Angioplasty • Revascularization • Percutaneous coronary Keywords intervention

Introduction

Conclusions

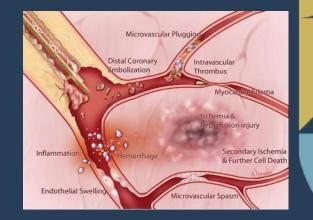

💓 ESC

Aims

or death remain serious, and rare PCI-related complications² In contrast, periproce dural MI (Type 4a MI) and myocardial injury are much Percutaneous coronary intervention (PCI) technique has dramatically more frequent and usually considered as benign.³ improved within the past 40 years to become the most widely used In 2012, the third universal definition of MI^d was the first to provide approach for myocardial revascularization. Constant innovations in catheters, wires, and stent technology have led to safer and more a clinically oriented definition of both Type 4a MI and myocardial successful procedures, especially in elective setting.¹ Acute stent injury. Biochemical myocardial injury defined as an isolated rise in carthrombosis [Type4b myocardial infarction (MI)], new plaquerupture diac biomarkers was differentiated from a periprocedural proven

* Corresponding author, Tel: +33 142163001, Fax: +33 142162931, Ernal: ich anne al vain@achoff

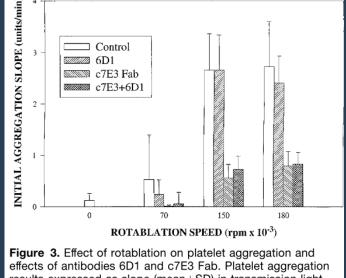
Published on behalf of the European Society of Cardiology. All rights reserved 🔅 The Author(s) 2018. For permissions, please email: journals.permissions@oup.com


Circ Cardiness (http://2018/11:0006752, DOI: 10.1161/CIRCINTERVENT and from http://cadamle.oug.com/ws/heartj/dvasos-article-abstract/doi/10.1093/ws/heartj/4bs299/481528

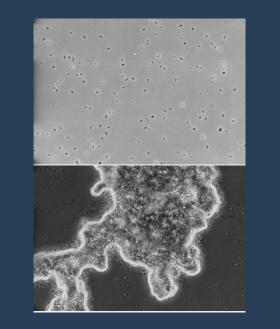
1. Circ. Cardiovasc. Interv. 11, 1–11 (2018). 2. Eur. Heart J. 39, 1100–1109 (2018)

Rotational atherectomy and periprocedural MI: Potential Mechanism

- 1. Distal embolism of atheromatous debris and thrombotic debris
- 2. Platelet activation and thrombosis leading to microvascular plugging of platelets and neutrophils
- 3. Neuro-hormonal activation and modulation of vascular and myocardial functions
- 4. Oxidative stress and inflammation



European Heart Journal (2011) 32, 23–32


Evidence of RA speed and platelet aggregation

Platelet activation was decreased by lowering the rotational speed

effects of antibodies 6D1 and c7E3 Fab. Platelet aggregation results expressed as slope (mean+SD) in transmission light units/min plotted against Rotablator speed. P<0.001 for the c7E3 Fab and c7E3+6D1 groups compared with control (no treatment) groups. N=10.

Circulation, vol. 98, no. 8, pp. 742-748, 1998.

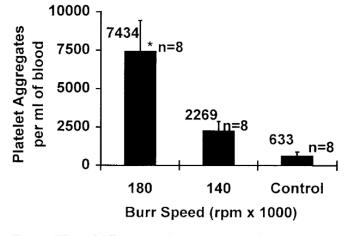


Fig. 5. Effect of different rotational speeds on platelet aggregation. Results are shown as platelet aggregates per ml of blood. Aggregates shown within the range of 20–130 μ m in diameter. The number of aggregates is decreased at 140,000 and the control (0 rpm). (n = 8, *P* < 0.0001 for 180,000 vs. 140,000, 180,000 vs. control, and for 140,000 vs. control.)

Catheterization and Cardiovascular Diagnosis, vol. 45, no. 2, pp. 208–214, 1998

European expert consensus on rotational atherectomy - Contemporary rotational atherectomy

	Traditional	Contemporary
Arterial access	Femoral 8 Fr	Radial (6-7.5 Fr) or femoral (6-8 Fr), depending upon burr size requirement and operator experience
Guiding catheter	Judkins catheters	Single curve with strong support. Operator preference but stable catheter position required
Guidewire	Floppy rotawire or extra support rotawire for aorto-ostial lesions	Rotawire placement not always straightforward. Use of regular wire placement, with exchange using microcatheter placement often required
18	0,000 - 200,000 rp	m → 135,000 - 180,000 rpm ^s
Ablation speed	180,000 to 200,000 rpm	Plaque modification usually achieved at low speeds (135,000 to 180,000 rpm) to reduce risk of complications
Temporary pacemaker	Always for dominant RCA and left main PCI	Smaller burrs at lower speeds have led to lower incidence of transient heart block. Many operators use atropine to treat, avoiding any complications of temporary pacemaker placement
Rotablation flush	Rotablation cocktail with verapamil, nitrates and heparin in saline recommended	Rotablation cocktail with verapamil, nitrates and heparin in saline recommended
Rotablation flush	Rotablation cocktail with verapamil, nitrates and heparin in saline recommended	EuroIntervention 2015;11:30-36. DOI: 10.4244/EIJV11
расеттакег		temporary pacemaker placement LCLVb

Rotational Atherectomy Speed

ords: Coronary intervention: Restenosis: Rotational atherectom

© 2003 Elsevier Ireland Ltd. All rights reserved.

Key words: rotational atherectomy; low-speed; high-speed; slow flow; randomized tria

time (1955-9 society) estudi 996-49 society, inc. in were similar to wais similar between L and M proups (15.1x87) lever significantly higher in L groups than in M group, MR value wai similar between L and M proups (15.1x87) l Procedure success wai achieved in all cases. Complication rate was similar between L and M proups (15.1x87) class similar between the between them (15.1x87) sectors 20.5, in Pro255.

Invious andy. Combination of ISBA and ISBA is a safe and	there is a part of the second part of the second seco
1. Introduction	Lower platform speeds are reported to be associated with
Retational atherectomy (RA) is a method to ablate sesistant or bactive calcified lesions mechanically: RA preduces lamma enlargement by physical inversel of plaque and orderction in plaque rigidity: enabling ultation [1]. However, universal adoption of RA technique has been hampered by lack of standardized protocols [2]. Transitionally, high-speed KA	disadoratagos, nech as berez lodging und útficulty in passage of the burr to the datal laisos, which high platism speed increases platielst activation and theorehoutic complications, such as sizer flow and nos reflow [5–7]. Although recent nodes have feld to abetter understanling of optimal platisms speed, latti eix lamon altout the association between platform speed and actor larmen gain.
(HSRA) has been performed in the recommended range form 180,000 is 200,000 rpm. HSRA enables treatment of heavily calcified locient, field rating drug-duting event implantation and expansion [5, 4]. However, recent studies show that a	The objective of this study is to evaluate the effect of additional low-speed RA (15RA) following conventional BSRA on acute humes gain using separatial optical fe- quency domain imaging (OPDI) in newtro and human

Hindawi Journal of Interventional Cardiology Volume 2019, Article 1D 9282876, 7 pages https://doi.org/10.1155/2019/9282876

Research Article

A Novel Rotablator Technique (Low-Speed following High-Speed Rotational Atherectomy) Can Achieve Larger Lumen Gain: Evaluation Using Optimal Frequency Domain Imaging

Takanobu Yamamoto (2), Sawako Yada, Yuji Matsuda, Hirofumi Otani, Shunji Yoshikawa, Taro Sasaoka, Yu Hatano, Tomoyuki Umemoto, Daisuke Ueshima, Yasuhiro Maejima, Kenzo Hirao, and Takashi Ashikaga (2)

The Department of Cardiovascul ar Medicine, Tokyo Medical and Dental University; Japan

Correspondence should be addressed to Takashi Ashikaga; ashikagat@gmail.com

Received 3 September 2018; Revised 20 January 2019; Accepted 2 May 2019; Published 20 May 2019

Academic Editor: Magnus Settergren

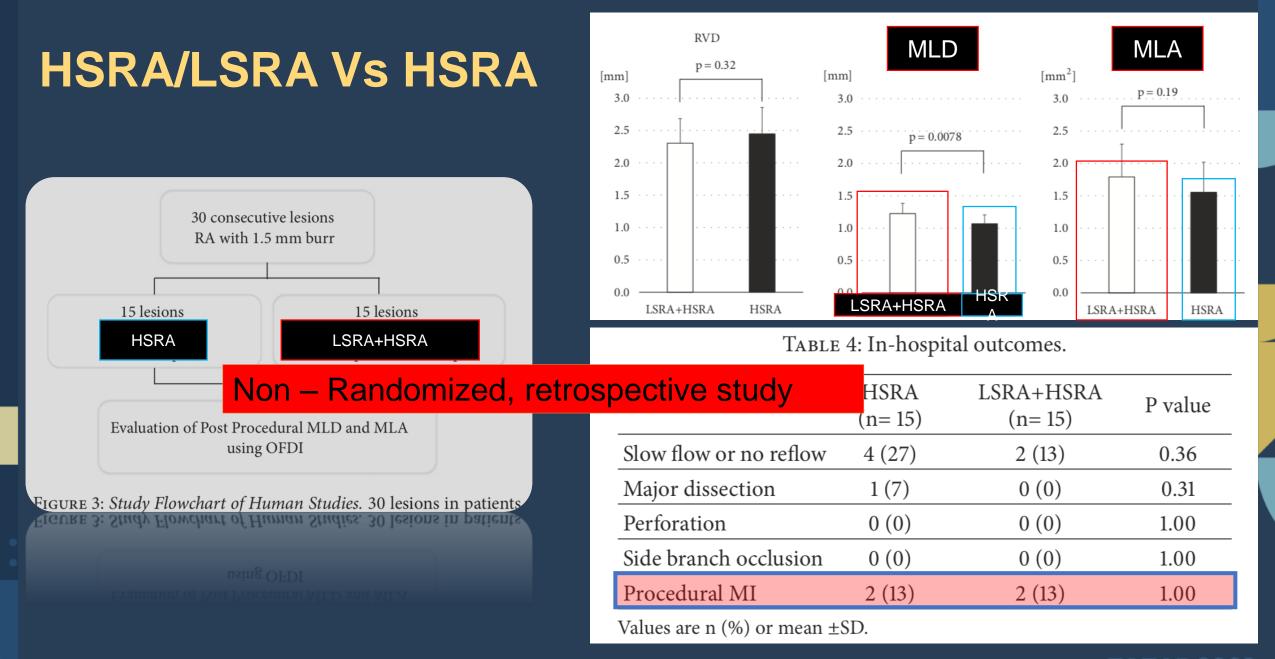
Copyright © 2019 Takanobu Yamamoto et al. This is an open access article distributed under the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. While the evaluation of burr speed vus discussed regarding platlet aggregation, the association between platform speed rotational atherectomy (LSRA) in in-vitro experiments, minimum lumen diameter (MLD) and minimum lumen area (MLA), after conventional high-speed rotational atherectomy (HSRA group) and those after LSRA following HSRA (LSRA+HSRA group) treated by 1.5 mm burrs were measured by optical frequency domain imaging (OFDI) in 30 consecutive human lesions. *Results* The in-vitro experiments demonstrated that MLD and MLA after LSRA+HSRA were significantly larger (MLD: LSRA+HSRA group) treated by 1.5 mm, Burrs were measured by optical frequency domain imaging (OFDI) in 30 consecutive human lesions. *Results* The in-vitro experiments demonstrated that MLD and MLA after LSRA+HSRA were significantly larger (MLD: LSRA+HSRA, ±0.05 mm, HSRA=L43 ±0.05 mm, p=0.015, MLA: LSRA+HSRA=1.90 ±0.17 mm², HSRA=1.71±0.11 mm², and p= 0.077), requiring more crossing attempts (LSRA=134 ±20 mm; HSRA=1.27 ±21 til times, and q < 0.001). In human studies, there vas no significance in reference vestel diameter and lesion length before the procedure between two groups. MLDs after LSRA+HSRA were significantly larger than those in HSRA (LSRA+HSRA=1.22±0.16 mm, HSRA=1.07 ±0.14 mm, and p= 0.0078), while MLAs after LSRA+HSRA tended to be larger (LSRA+HSRA=1.22±0.16 mm, HSRA=1.07 ±0.44 mm², and p=0.019). There was no significance in the occurrence of in-hospital complication, including slow flow or no reflow, major dissection, and procedural myocardial infarction, between LSRA+HSRA and HSRA a. LSRA can achieve larger larger strategy of reservely calcified lesions in dinical practice.

1. Introduction

Rotational atherectomy (RA) is a method to ablate resistant or heavily calcified lesions mechanically. RA produces lumen enlargement by physical removal of plaque and reduction in plaque rigidity, enabling dilation [1]. However, universal adoption of RA technique has been hampered by lack of standardized protocols [2]. Traditionally, high-speed RA (HSRA) has been performed in the recommended range from 180,000 to 200,000 rpm. HSRA enables treatment of heavily calcified lesions, facilitating drug-cluting stent implantation and expansion [3, 4]. However, recent studies show that a safe range of RA speed is between 135,000 and 180,000 rpm. Lower platform speeds are reported to be associated with disadvantages, such as burr lodging and difficulty in passage of the burr to the distal lesion, while high platform speed increases platelet activation and thrombotic complications, such as slow flow and no reflow [5–7]. Although recent studies haveled to a better understanding of optimal platform speed, little is known about the association between platform speed a cute lumen gain.

The objective of this study is to evaluate the effect of additional low-speed RA (LSRA) following conventional HSRA on acute lumen gain using sequential optical frequency domain imaging (OFDI) in *in-vitro* and human studies. To the best of our knowledge, this is the first report


May, 2019 Low speed 110,000

A Novel rotational atherectomy technique has shown to achieve larger lumen gain

Large lumens could be obtained using LSRA.

 110,000 rpm would produce more vibration amplitude than 190,000 rpm, which would lead to higher acute lumen gain without burr sizing up

J Interv Cardiol. 2019;2019:9282876.

Pros and Cons of High Speed and low speed RA

	Pros	Cons
Minimizes friction and High enables the burr to easily		Greater platelet aggregation , microcavitation, hemolysis → Higher thrombotic complications – slow flow – no reflow
Speed	navigate through tortuous stenotic vessels	Prolonged burr contact with the vascular wall generates a considerable amount of heat, which can adversely affect complication and restenosis
Low	Lesser platelet aggregation	Difficulty in passage of the burr to
speed	Lesser thrombotic	distal lesion
	complications	Longer procedural time

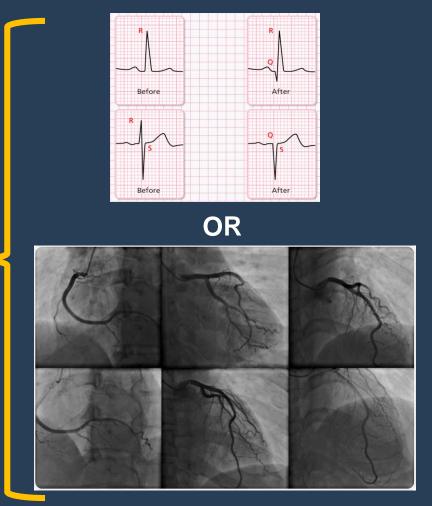
Comparison of Periprocedural Myocardial infarction/injury Novel (Low-Speed following High-Speed) versus **Conventional (High speed) Rotational Atherectomy Technique for Heavily Calcified Coronary Artery Disease**

TCTAP 2022

Objectives

- Primary Objective
 - To compare the incidence of periprocedural MI (infarction/injury) in 2 groups (HSRA Vs LSRA+HSRA).
- Secondary Objectives
 - To compare the incidence of hospital outcomes in 2 groups
 - To compare immediate post RA luminal gain between 2 groups
 - To compare the optimal stent result between 2 groups

ESC European Society of Cardiology



Fourth Universal Definition of Type 4a MI (2018)

X

Myocardial Injury

European Heart Journal (2018) 39, 3281–3300

Study Design

- Prospective, Observational, single-center study
- Study period
 - January 2019 May 2021
- Indications for RA:
 - 1. Angiographically moderate or severe calcified lesions
 - 2. Diffuse lesions expected to be difficult to stent
 - 3. Ostial lesions
 - 4. Failure to cross the lesion with an OCT/IVUS catheter tip

Method - Inclusion criteria:

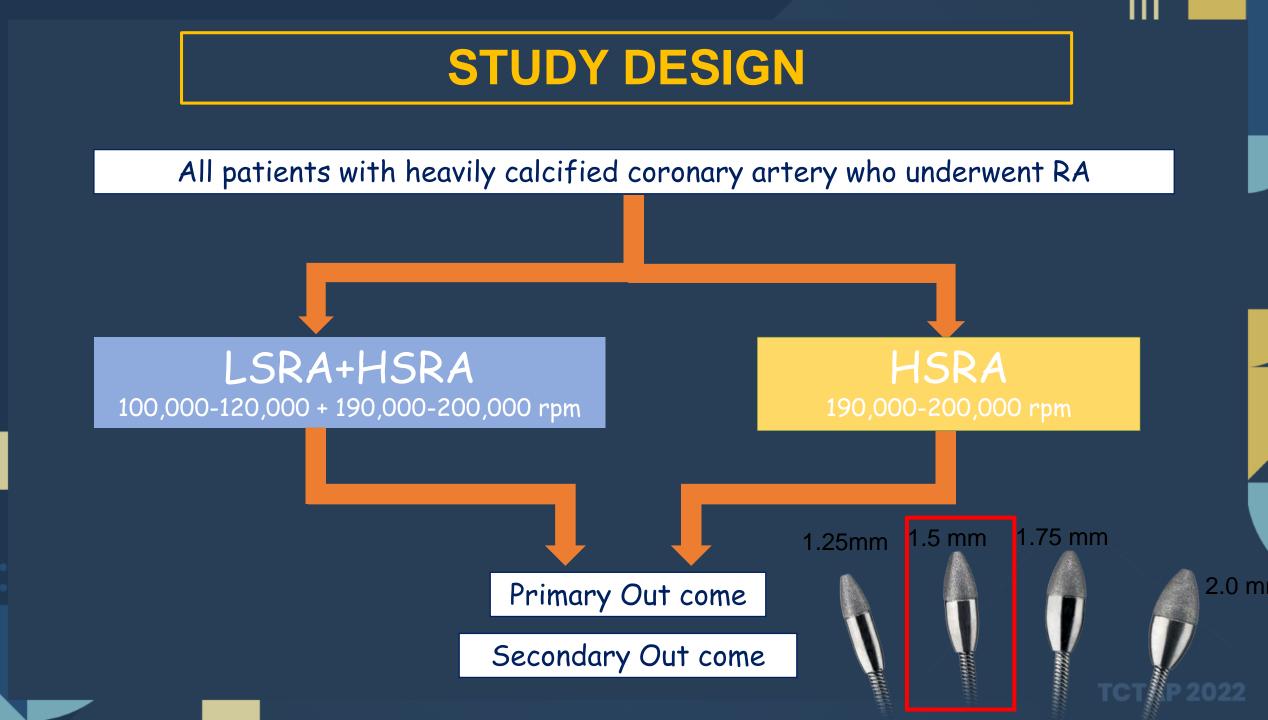
Clinical inclusion criteria

- 1. Age above 18 years with Informed written consent
- 2. Anginal symptoms and/or reproducible ischemia in the target area by ECG, functional stress testing or fractional flow reserve
- 3. Angiographically proven coronary artery disease

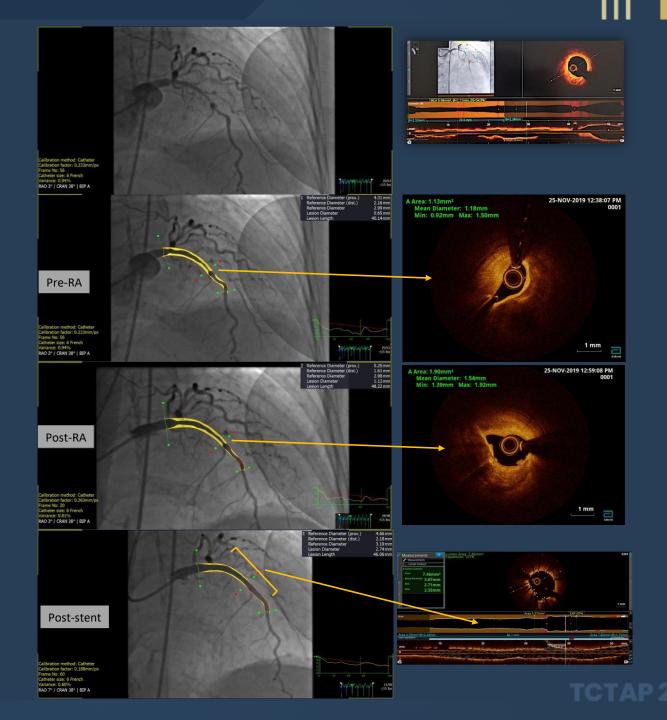
Angiographic inclusion criteria

- 1. Target reference vessel diameter between 2.25 and 4.0 mm by visual estimation
- 2. Luminal diameter reduction of 50-100% by visual estimation
- 3. Failure to cross the lesion with an OCT catheter
- 4. Severe calcification of the target lesion
 - Optical coherence tomography : Calcific plaque maximum angle >180°; maximum thickness >0.5 mm; length >5 mm *

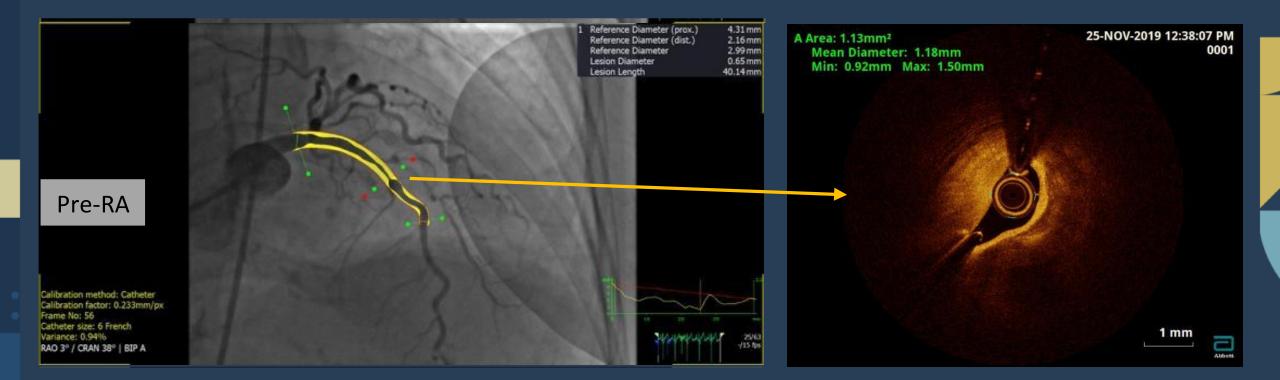
*EuroIntervention. 2018;13:e2182–e2189. #Am Heart J. 1999 Jan;137(1):93-9.


Exclusion criteria:

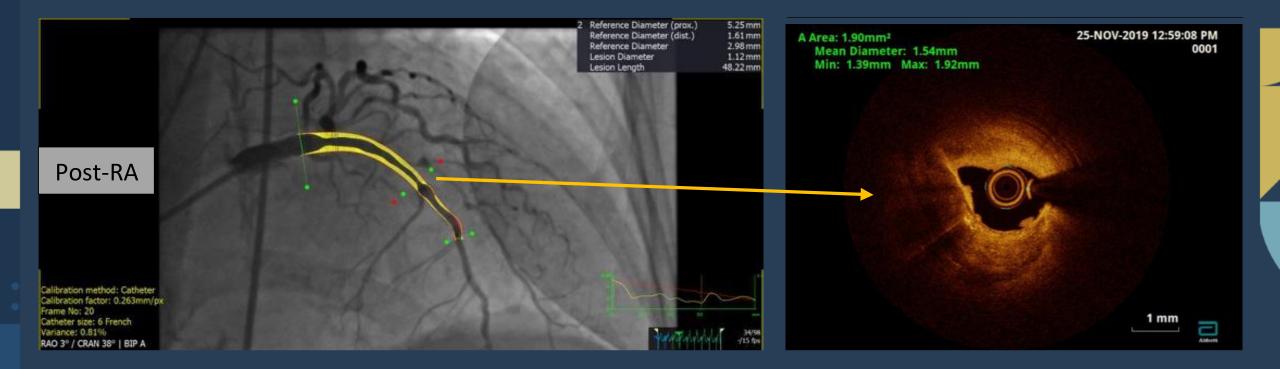
Clinical exclusion criteria


Angiographic exclusion criteria

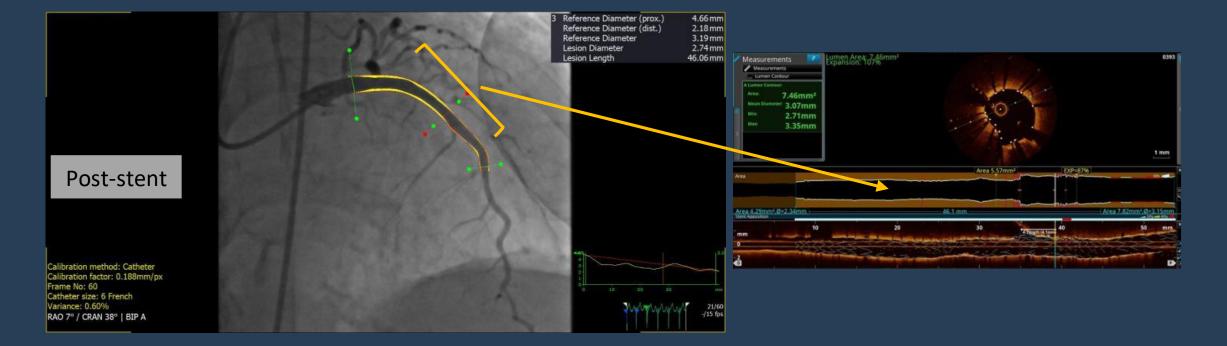
- 1. Myocardial infarction within 1 week
- 2. Decompensated heart failure
- 3. Limited long-term prognosis due to other conditions


- 1. Target lesion is in a coronary artery bypass graft
- 2. Target lesion is an in-stent restenosis
- 3. Target vessel thrombus

Representative case of RA using optical coherence tomography (OCT) and assessment of minimal luminal diameter (MLD) by Quantitative coronary angiography (QCA).



Pre-Rotational atherectomy


TCTAP 2022

Post- Rotational atherectomy

TCTAP 2022

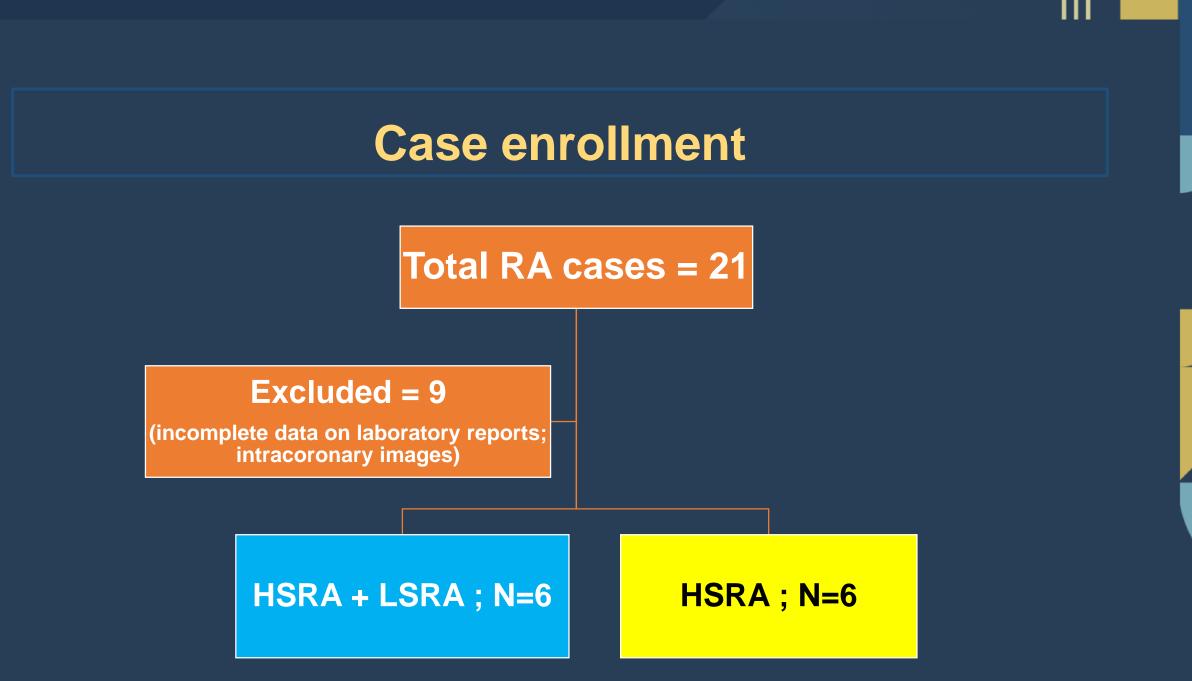
Assessment of post-stenting optimization results.

TCTAP 2022

Statistical Analysis

- Categorical variables number and percentages and were compared using Fisher's exact test
- Continuous variables the mean ± standard deviation (SD) and were compared using the two-sample t-test
- Non-parametric continuous variables interquartile ranges (IQR)
- Multivariable binomial regression analysis risk difference (RD) and its 95% confidence interval (CI) of PMI/PMJ between HSRA+LSRA and HSRA group
 - Potential confounders of periprocedural myocardial infarction or injury based on previous studies
 - - age ^{1,2}, MVD ², lesion length ³, stent length^{2,4}, stent diameter, imaging catheter uncrossable lesions⁵,
 - burr to artery ratio, operator experience⁶ and those significant difference characteristics between
 - HSRA+LSRA and HSRA were included in the final model.

- 1. Circ Cardiovasc Interv. 2016;9(11):1-6.
- 2. Eur Heart J. 2018;39(13):1100-9.
- 3. Circulation. 1994;89(2):882–92.
- 4. EuroIntervention. 2016;12(12):1448–56.
- 5. Sci Rep. 2020;10(1):1–9.
- 6. Cardiovasc Interv Ther. 2020;36(1):1-18.



RESULTS

TCTAP 2022

_

ш

TCTAP 2022

Table 1: Baseline characteristics

Parameters	LSRA+HSRA, n (%)	HSRA, n (%)	P value
Total	6 (50)	6 (50)	
Patient characteristic			
Age, years, mean (SD)	68.8 (10.1)	71.8 (7.1)	0.560
Male	5 (83)	2 (33)	0.240
Body mass index, kg/m ² , mean (SD)	25.6 (3.2)	23.3 (2.5)	0.200
Hypertension	4 (67)	6 (100)	0.450
Diabetes mellitus	4 (67)	2 (33)	0.570
Dyslipidemia	3 (50)	4 (67)	1.000
Chronic renal failure (creatinine>2 gm/dl)	2 (33)	2 (33)	1.000
Chronic renal failure on hemodialysis	1 (17)	1 (17)	1.000
Prior myocardial infarction	3 (50)	2 (33)	1.000
Current smoker	0 (0)	1 (17)	1.000
LV ejection fraction, %, (SD)	56.5 (14.9)	63.4 (14.3)	0.430
Multivessel disease	6 (100)	5 (83)	1.000
Medication			
Aspirin	5 (83)	5 (100)	1.000
Clopidogrel	3 (50)	3 (80)	1.000
Ticagrelor	1 (17)	1 (17)	1.000
Anticoagulant	1 (17)	1 (17)	1.000
Statin treatment	4 (67)	5 (83)	0.450

Table 2. Angiographic and procedural characteristics (n=12)

Parameters	LSRA+HSRA HSRA/LSRA	HSRA	P value
Target lesion characteristics			
Left anterior descending artery	4 (67)	5 (83)	1.000
Left circumflex artery	2 (33)	0(0)	0.450
Right coronary artery	0 (0)	1 (17)	1.000
ACC/AHA B2/C lesion	3 (50)	4 (67)	1.000
Imaging catheter uncrossable	4 (67)	3 (50)	1.000
Procedural characteristics			
Approach site		i	
Radial	1 (17)	2 (33)	1.000
Femoral approach	5 (83)	4 (67)	
Guide catheter			
6F	2 (33)	6 (100)	0.064
7 Fr	4 (67)	0 (0)	
Guidewire used during rotational atherectomy	,		
RotaWire floppy	6 (100)	6(100)	-
Total run time	96 (29.1)	83.7 (35.2)	0.520
180,000 – 200,000 rpm, mean (SD)	51.0 (15.4)	83.7 (35.2)	
100,000 – 120,000 rpm, mean (SD)	45.0 (17.0)	0.0 (0.0)	
Burr-artery ratio, mean (SD)	0.5 (0.2)	0.6 (0.2)	0.570

Table 2. Angiographic and procedural characteristics (n=12)

	HSRA/LSRA	HSRA	
Cutting or scoring balloon before stenting			
Number, median (IQR)	1.0 (1.0, 2.0)	1.0 (1.0, 1.0)	0.530
Maximum diameter, mm, mean (SD)	2.8 (0.5)	2.8 (0.4)	1.000
Maximum pressure, atm, mean (SD)	17.7 (5.0)	17.2 (2.3)	0.850
Non-compliance balloon before stenting			
Number, median (IQR)	1.0 (0.0, 1.0)	0.5 (0.0, 1.0)	0.730
Maximum diameter, mm, mean (SD)	2.5 (0.6)	2.4 (0.1)	0.820
Mevimum pressure, atm, mean (SD)	19.0 (6.2)	<u> 19.3 (1.2)</u>	0.930
Stent			
Number median (IOR)	20(20 20)	20(1030)	0 720
Diameter, mm, mean (SD)	(0.3) 3.1	2.6 (0.3)	0.009
Total length, mm, mean (SD)	47.7 (19.3)	55.3 (31.3)	0.620
Adjunct post dilatation balloon after stentin	g		
Number, median (IQR)	2.0 (2.0, 2.0)	1.0 (1.0, 2.0)	0.019
Maximum balloon diameter, mm, mean			
Maximum balloon diameter, mm, mean (SD)	4.0 (0.4)	3.0 (0.3)	0.003
Maximum balloon pressure, atm, mean			AP 2022

Primary outcome : Periprocedural myocardial infarction/injury

In Hospital Outcome	Total n (%)	LSRA+HSRA, n (%)	HSRA, n (%)	P value
Peri-procedural myocardial infarction	2 (16.7)	0 (0)	2 (33)	0.450
Peri-procedural myocardial injury	7 (58.3)	4 (67)	3 (50)	0.450
Peri-procedural myocardial infarction / injury	9 (75)	4 (67)	5 (83)	1.000
Final TIMI flow grade < 3	0 (0)	0 (0)	0 (0)	1.000

TCTAP 2022

Risk difference by multivariable binomial regression analysis

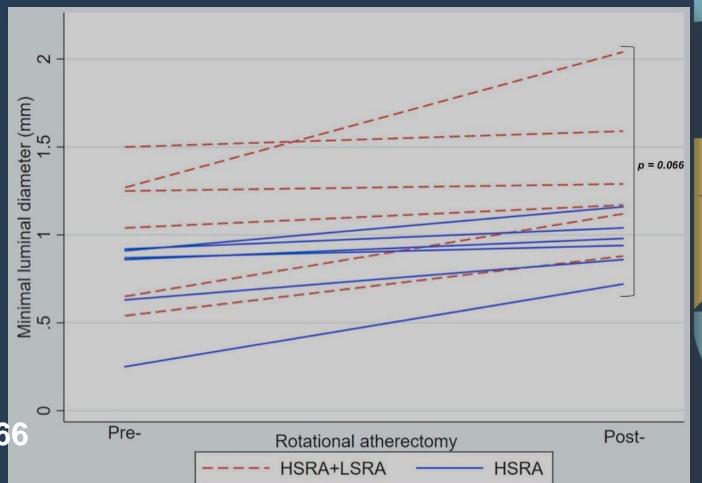
	Deviance Pearson) 682		(1/df)		12 2 1 .6355813 .3749312
	Variance function: V(u) = u*(1-u) Link function : g(u) = u				[Bernou [Identi		
					BIC	= -	-3.698651
	peri_injury	Risk Diff.	EIM Std. Err.	z	P> z	[95% Conf	Interval]
/HSRA		5467929	.0653859	-8.36	0.000	674947	4186388
	age	.0580364	.0027552	21.06	0.000	.0526364	.0634364
	mvd	0	(omitted)				
	lesion_length	0170855	.0014599	-11.70	0.000	0199468	0142241
	st_mean_dia	.7505765	.0699958	10.72	0.000	.6133872	.8877658
	st_n	1.193516	.2381403	5.01	0.000	.7267691	1.660262
	st_l_total	0271267	.0057291		0.000	0383556	0158979
	burr_art_ratio	.5643292	.1461099	3.86	0.000	.2779591	.8506993
	operator	.152704	.1901053		0.422	2198955	.5253035
		- <u> </u>	.275651	-4.49	0.000	-1.777755	6972225
	uncrossable	-1.237489					
	_cons	-4.964374	.3434746	-14.45	0.000	-5.637571	-4.291176

LSRA

TCTAP 2022

Primary outcome : Periprocedural myocardial infarction/injury

Risk difference by multivariable binomial regression analysis


Variable	Myocardial infarction	Myocardial infarction or injury				
	Risk difference (95% CI)	P value				
HSRA+LSRA	-0.55 (-0.67, -0.42)	<0.001				

Secondary outcome : Luminal Gain

Comparison of <u>MLD</u> between pre-RA and post-RA in HSRA+LSRA and HSRA group by QCA

Adjusted mean difference 0.35 mm, 95% CI 0.027 mm - 0.727 mm, p=0.066

TCTAP 2022

Secondary Outcome: Complications

Complication during procedure	LSRA+HSRA, n (%)	HSRA, n (%)	P value
Slow flow (< TIMI flow 3) immediate post RA	1 (17)	1 (17)	1.000
Major dissection	0 (0)	0 (0)	1.000
Perforation	0 (0)	0 (0)	1.000
Major vessel perforation (Type III) due to burr	0 (0)	0 (0)	1.000
Minor vessel perforation (Type II) due to guidewire	0 (0)	0 (0)	1.000
Major side branch occlusion	0 (0)	0 (0)	1.000
Burr entrapment	0 (0)	0 (0)	1.000
Transection of guidewire	0 (0)	0 (0)	1.000

Secondary Outcome: Optimal stent result

Plaque burden <50% at stent edge and no lipid pool Dissection Malapposition	Criteria	HSRA+LSRA , n(%)	HSRA, n(%)	P value
(<60°, flap limited to intima, <2mm length)	Relative stent expansion > 80%	3 (50)	5 (83)	0.550
Lumen EEM Ref dist. MSA MSA>5.5mm² (IVUS) and >4.5mm² OCT	MSA > 4.5 mm ² by OCT	4 (67)	2 (33)	0.570
MSA/average reference lumen > 80%	Acute malapposition*	3 (50)	2 (33)	1.000
Measurements Kraat 7,46mm ² Lumen Contour A Lumen Contour A Lumen Contour Mean Diameter 3.07mm	Dissection [†]	2 (33)	3 (50)	1.000
Mile: 2.71mm Max: 3.35mm Area Area 5.57mm² Area Area 5.57mm² Area Area 5.57mm² Sint Accolutor 46.1 mm Sint Accolutor 10 20 30 Zowald at two 4		f <u>optimal sten</u> SRA+LSRA & H	<i>t result</i> bet ISRA	tween

Strength

• First study to compare incident periprocedural myocardial infarction between 2 techniques (LSRA/HSRA Vs HSRA)

Limitations

- A single center study
- Small sample size
- Bias influenced by operator preference and experience cannot be controlled
- 2D QCA assessment of lumen diameter has limitations in accurately accessing the true lumen size and diameter stenosis

Conclusion

- Periprocedural myocardial infarction or injury during rotational atherectomy is common.
- For long heavily calcified coronary lesion, the novel technique of lowspeed rotational atherectomy following high-speed rotational atherectomy significantly reduced the risk of periprocedural myocardial infarction or injury.
- There was trend towards larger post rotational atherectomy minimal luminal diameter in the new technique of low-speed rotational atherectomy following high-speed rotational atherectomy group.
- Further studies are needed to confirm these findings and its clinical impact on follow up major adverse cardiovascular events (MACE).

Thank you

TCTAP 2022

_

ш