Prognostic Impact of Plasma Glucose on Cardiogenic Shock Patients With or Without Diabetes Mellitus: SMART RESCUE Trial

Seong Huan Choi, MD

Division of Cardiology, Department of Medicine, Inha University Hospital, Incheon, Korea

Disclosure

• The Authors and the presenter have no conflict of interest to declare

Discussion Points

- Does hypergylcemic status influence In-Hospital Mortality in Cardiogenic shock patients?
- Should higher cut-off value be applied to DM patients in Cardiogenic shock patients?

Stress Hypergylcemia in Critically ill Paitents

- Critically ill patients frequently experience hyperclycemia regardless of having Diabetes Melitus
- This phenomenon is referred to as 'Stress Hyperglycemia'

Mechanism of Stress Hyperglycemia

- Neuroendocrinologic alterations-> decreased glucose disposal + increased insulin resistance-> hyperglycemia
- A: Homeostasis, insulin sensitivity and pancreatic B-cell function are directly related which maintains blood glucose in the normal range
- B: Allostasis, B-cell insulin secretion increases to compensate for insulin resistance. However, complete correction is avoided for meal response

J Parenter Enteral Nutr, Volume: 30,01 March 2006

Hyperglycemia and Acute Coronary Syndrome

Mortality by admission glucose level

Mortality by admission glucose levels with or without DM

AHA SCIENTIFIC STATEMENT, March 2008

ГСТАР 2022

Hyperglycemia on admission in Acute Decompensated Heart Failure

Clinical parameters	HR (95%CI)	p-Value	
Age	1.01 (0.99-1.03)	0.272	1
BMI	0.97 (0.91-1.03)	0.254	
Current smokers	1.33 (0.85-2.09)	0.216	
History of HF	1.31 (0.82-2.09)	0.259	
Ischemic heart disease	1,25 (0.80-1.97)	0.328	0
Atrial fibrillation	1.68 (1.01-2.81)	0.046	- 0
Chronic obstructive pulmonary disease	2.27 (1.00-5.11)	0.048	
Systolic BP	0.99 (0.98-0.99)	0.001	
Hemoglobin	0.86 (0.77-0.95)	0.004	
eGFR	1.00 (0.99-1.01)	0.651	- ğ
Sodium	0.98 (0.93-1.03)	0.405	
C-reactive protein*	1.10 (0.95-1.28)	0.188	
BNP*	1.02 (0.81-1.27)	0.879	
Diuretics	1.83 (1.13-2.95)	0.014	
No-BG elevation, No-DM	1.00 (Reference)		
No-BG elevation, DM	1.26 (0.59-2.67)	0.546	
BG elevation, no-DM	1.79 (1.02-3.12)	0.042	
BG elevation, DM	1.73 (1.01-2.98)	0.048	

BG, blood glucose; BMI, body mass index; BNP, B-type natriuretic peptide; BP, blood pressure; DM, diabetes mellitus; eGFR, estimated glomerular filtration rate; HF, heart failure; HR, hazard ratio.

* Natural log-transformed values were used for analysis.

Multivariate hazard ratio for mortality rate

Journal of Cardiology. 2017 Apr

CTAP 2022

Hyperglycemia In Cardiogenic Shock complicating AMI ; IABP-SHOCK II-trial

Clinical Research in Cardiology 2018

ICTAP 2022

Purpose

- Despite the abundance of studies regarding hyperglycemia and its prognostic impact in cardiovascular patients, the results do not share concrete coherence due to diverse disease entity spectrum and distinctive clinical settings
- Our aim was to evaluate the prognostic value of admission glucose level regardless of having DM in cardiogenic shock patients

Study Population

- A total of 1,177consecutive cardiogenic shock patients were enrolled from January 2014 to December of 2018 at 12 hospitals in South Korea.
- Patients were divided into four groups according to their initial plasma glucose level (guideline from glucose management of critically ill patients)
 Glucose management in critically ill adults and children. Lancet Diabetes Endocrinology. 2015
- Diabetes patients (n=752) and non-diabetes patients (n=425);

Group 1 (≤8 mmol/L), Group 2 (8-12 mmol/L), Group 3 (12-16mmol/L) Group 4 (≥16mmol/L)

Inclusion/Exclusion Criteria

- Inclusion Criteria
 - 1) Systolic blood pressure <90mmHg for >30min or catecholamine or vasopressor required to maintain pressure above 90mmHg during systole
 - 2) Clinical signs of pulmonary congestion and signs of impaired organ perfusion with at least one of the following criteria:

✤ Altered mental status;

Cold, clammy skin and extremities;

♦ Oiguria with urine output< 0.5 mL/Kg/h for the first 6 hours of admission

Serum lactate > 2.0mmol/L

- Exclusion Criteria
 - 1) Out-of-hospital cardiac arrest
 - 2) Septic or hypovolemic shock.

Study Design and Flow Chart

TCTAP 2022

•

Baseline Characteristics

			Non DM		DM					
Baseline charactersistics	Group-1(273)	Group-2(255)	Group-3(122)	Group-4(102)	p-value	Group-1(60)	Group-2(113)	Group-3(99)	Group-4(153)	p-value
Age(years)	62.36±15.90	65.19 ± 14.84	66.69 ± 12.75	60.84 ± 12.86	< 0.01	71.30 ± 10.40	68.83 ± 10.52	69.22±11.62	67.75 ± 12.21	0.23
BMI(kg/m ²)	23.50 ± 3.78	22.95 + 3.35	23.36 ± 4.19	23.54 + 3.21	0.31	23.14 ± 4.00	23.93 ± 3.24	23.76 ± 3.64	23,26 ± 3.37	0.32
Gender, female	88(32.2%)	81(33.9%)	32(26.2%)	29(28.4%)	0.61	24(40%)	31(27.4%)	21(21.2%)	54(35.3%)	0.03
HTN, n (%)	111(40.7%)	103(40.4%)	52(42.6%)	42(41.2%)	0.98	41(68.3%)	87(77.0%)	75(75.8%)	16(69.3%)	0.39
Dyslipidemia n (%)	53(19.4%)	50(19.6%)	37(30.3%)	21(20.6%)	0.07	17(28.3%)	38(33.6%)	45(45.5%)	58(37.9%)	0.14
Smoking	83(30.4%)	73(28.6%)	45(36.9%)	49(48%)	< 0.01	9(15.0%)	28(24.8%)	22(22.2%)	33(21.6%)	0.53
CKD	16(5.9%)	8(3.1%)	11(9.0%)	5(4.9%)	0.11	13(21.7%)	24(21.2%)	19(19.2%)	24(15.7%)	0.63
PAOD	9(3.3%)	5(2%)	5(4.1%)	1(1%)	0.39	3(5.0%)	7(6.2%)	10(10.1%)	10(6.5%)	0.57
previous MI	28(10.3%)	27(10.6%)	15(12.3%)	5(4.9%)	0.29	9(15.0%)	17(15.0%)	31(22.8%)	15(10.8%)	0.06
previous CVA	26(9.8%)	17(6.7%)	10(8.2%)	2(2%)	0.08	7(11.7%)	15(13.3%)	17(17.2%)	17(11.1%)	0.56
Etiology of shock					0.04					< 0.01
Ischemic cardiomyopathy	194(71.1%)	199(78%)	102(83.6%)	78(76.5%)		42(70.0%)	86(76.1%)	85(85.9%)	133(86.9%)	
Non ischemic cardiomyopathy	79(28.9%)	56(22%)	20(16.4%)	24(23.5%)		18(30.0%)	27(23.9%)	14(14.1%)	20(13.1%)	
APACHE II score	4.77 ± 3.32	5.03 ± 3.04	5.52 ± 3.09	5.97 ± 3.15	< 0.01	5.42 ± 3.67	5.30 ± 3.38	5.59±3.35	6.07 ± 3.18	0.27
LVEF (%)	38.99 ± 16.82	38.54 ± 16.19	39.32 ± 16.22	35.03 ± 18.11	0.27	36.62 ± 16.24	$\textbf{37.78} \pm \textbf{14.67}$	37.57 ± 15.13	31.28 ± 14.65	< 0.01

Data are presented as mean±standard deviation or number (%)

•

Organ Support Modality

lodality of organ support	Group-1	Group-2	Group-3	Group-4	P value	
ion DM						
Mechanical ventilator	124 (45.4%)	125 (49%)	82 (67.2%)	84 (82.4%)	< 0.01	
CRRT	47 (17.2%)	43 (16.9%)	31 (25.4%)	33 (32.4%)	< 0.01	
ECMO	92 (33.7%)	96 (37.6%)	49 (40.2%)	60 (58.8%)	< 0.01	
IABP	55 (20.1%)	59 (23.1%)	48 (39.3%)	26 (25.5%)	< 0.01	
Vasoactive inotropic score	62.66 ± 118.61	65.21 ± 108.92	99.86 ± 212.13	135.60 ± 145.14	< 0.01	
M						
Mechanical ventilator	29 (48.3%)	60 (53.1%)	64 (64.6%)	108 (70.6%)	< 0.01	
CRRT	14 (23.3%)	30 (26.5%)	28 (28.3%)	43 (28.1%)	0.89	
ECMO	24 (40.0%)	38 (33.6%)	33 (33.3%)	73 (47.7%)	0.06	
IABP	16 (26.7%)	31 (27.4%)	26 (26.3%)	44 (28.8%)	0.98	
Vasoactive inotropic score	60.03 ± 113.84	62.13 ± 109.84	77.86 ± 214.69	67.05 ± 87.98	0.82	

Data are presented as mean±standard deviation or number (%); CRRT= continuous renal replacement therapy, ECMO=extracorporeal membrane oxygenation,

IABP= intra-aortic balloon pump.

Uni & Multivariate Cox regression

Non DM							DM						
Variables	Univariate				Multivariate		Variables	Univariate			Multivariate		
	HR	95% CI	p-value	HR	95% CI	p-value	variables	HR	95% CI	p-value	HR	95% CI	p-value
Age, per year	1.022	1.012-1.032	<0.001	1.031	1.018-1.043	< 0.01	Age, per year	1.018	1.004-1.033	0.012	1.022	1.007-1.038	< 0.01
HTN	1.236	0.957-1.597	0.105				HTN	1.082	0.766-1.527	0.655			
Dyslipidemia	0.682	0.484-0.962	0.029	0.629	0.417 <mark>-</mark> 0.950	0.028	Dyslipidemia	1.098	0.803-1.501	0.558			
CKD	2.018	1.313-3.104	0.001				CKD	1.397	0.97 <mark>9-1</mark> .994	0.065			
Smoking	0.718	0.539-0.956	0.023	0.649	0.442-0.955	0.028	Smoking	0.771	0.519-1.146	0.198			
LVEF, per unit	0.973	0.964-0.983	< 0.001	0.969	0.959-0.979	< 0.01	LVEF, per unit	0.961	0.949-0.974	< 0.001	0.959	0.946-0.972	<0.01
APACHE II score, per score	1.125	1.085-1.167	< <mark>0.00</mark> 1	1.094	1.046-1.146	< 0.01	APACHE II score, per score	1.075	1.027-1.124	0.002			
Serum creatinine, per unit	1.094	1.025-1.168	0.007				Serum creatinine, per unit	1.082	1.008-1.161	0.029			
Serum Glucose, per unit	1.003	1.002-1.004	< 0.001	1.003	1.002-1.004	< 0.01	Serum Glucose, per unit	1.001	1.000-1.002	0.065			

In-Hospital Mortality

A: Non-DM patients

B: DM patients

TCTAP 2022

Conclusion

- In non-DM patients, mechanical organ support such as ECMO, mechanical ventilation and CRRT showed incremental propensity in concordance with their serum glucose level.
- In non-DM patients, in-hospital mortality increased as admission glucose level increased.
- DM patients are exposed to chronic hyperglycemia therefore higher cut-off value for 'Stress hyperglycemia' is warranted