Vascular Inflammation in Plaque Rupture vs. Plaque Erosion: PCAT Attenuation

TCTAP 2022

Ik-Kyung Jang, MD, PhD Allan and Gill Gray Professor of Medicine Harvard Medical School

Disclosure

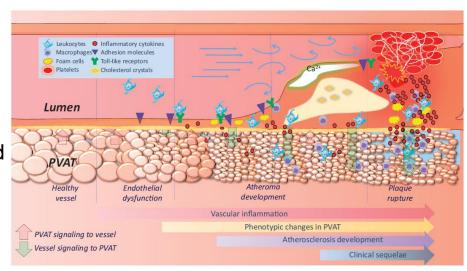
- Allan and Gill Gray Professorship
- Allan Gray Fellowship Funds
- Abbott Fellowship Grant

Background

- Vascular inflammation is a critical factor not only in atherogenesis but also in triggering ACS.

 Ross R. N Engl J Med 1999;340:115-26.
- Systemic inflammatory markers lack specificity for coronary vascular inflammation.
- Recently, a novel non-invasive marker of vascular inflammation measured by pericoronary adipose tissue (PCAT) attenuation using CCTA has been developed.

Goeller M and Dey D. et al. JAMA Cardiol 2018;3:858-863.

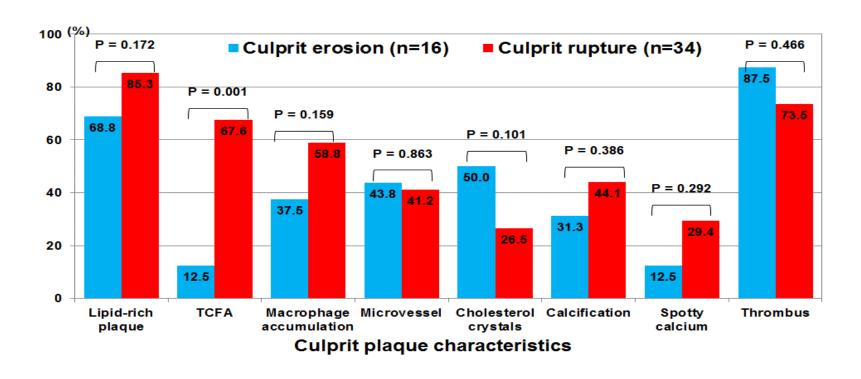

 A previous study reported that high PCAT attenuation (high vascular inflammation) is associated with increased cardiac mortality.

Oikonomou et al. Lancet 2018;392:929-939.

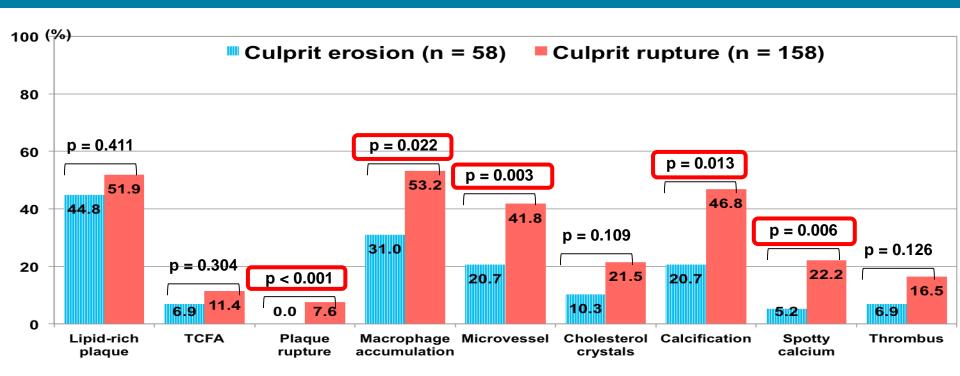
The role of inflammation and perivascular adipose tissue in atherosclerosis

- Peri-coronary adipose tissue secretes proinflammatory cytokines and other bioactive mediators which diffuse into the adjacent vascular wall, promoting atherogenesis in a paracrine manner. However, reverse signaling from vessels to the surrounding fat also takes place.
- Inflammatory molecules (TNF-α, IL-6) released from the inflamed arterial wall, diffuse into the perivascular space inducing lipolysis and suppressing adipogenesis.
- This response reduces adipocyte size and creates gradient of lipophilic phase, resulting in peri-coronary adipose tissue (PCAT) attenuation.

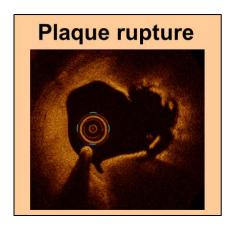
Antoniades et al. Eur Heart J. 2020

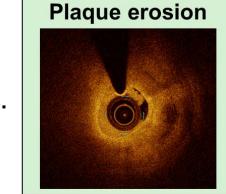

Hypothesis

The level of vascular inflammation is higher in "plaque rupture" than in "plaque erosion".


<u>Culprit</u> plaque characteristics: Plaque erosion vs. Plaque rupture

Non-culprit plaque characteristics : Plaque erosion vs. Plaque rupture

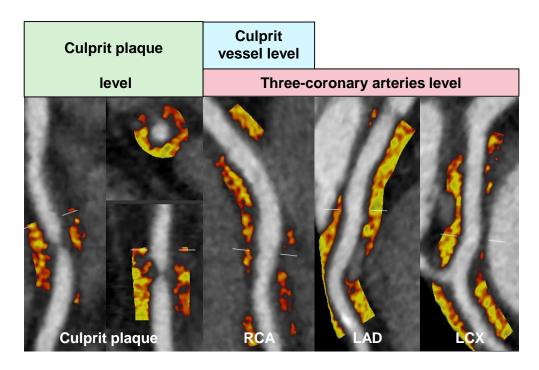




Background and Aim

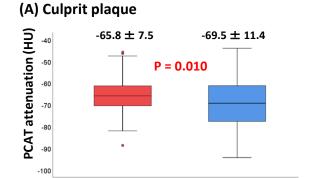
- However, the previous study was phenotyping of coronary plaques and lacks biological information.
- The aim of the current study was to compare the level of vascular inflammation measured by PCAT attenuation between patients with plaque rupture versus plaque erosion.

vs.

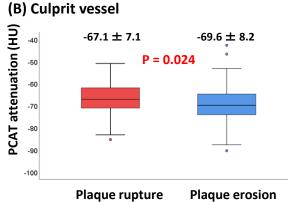

Methods

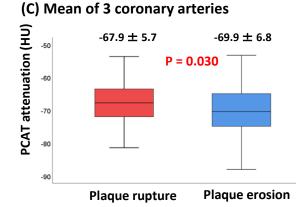
- 198 patients with NSTE-ACS, who underwent pre-intervention CCTA and OCT (NCT04523194).
- PCAT attenuation was measured by semi-automated software using Autoplaque version 2.5 (Cedars-Sinai Medical Center, California, USA).
- Culprit lesion pathology was identified by OCT: 107 plaque rupture and 91 plaque erosion.

Methods

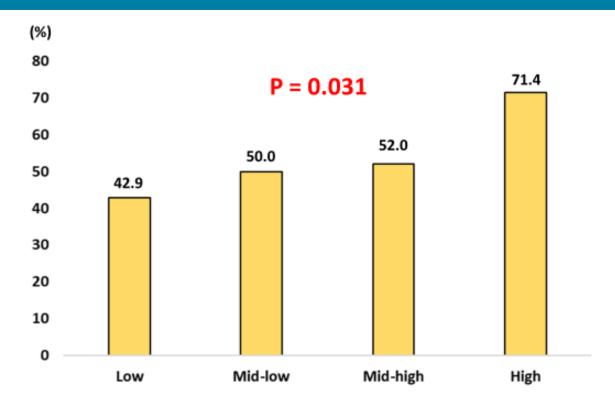


PCAT attenuation measurement in a patient who had culprit plaque in the RCA.


The level of vascular inflammation was measured at 3 levels:

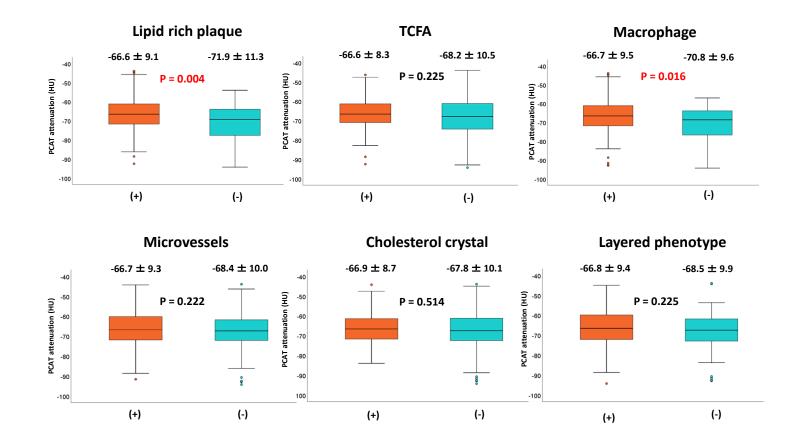

- Culprit plaque
- Culprit vessel
- All 3 coronary arteries

Plaque erosion



Plaque rupture

MASSACHUSETTS GENERAL HOSPITAL CORRIGAN MINEHAN HEART CENTER


(PCAT attenuation level and Prevalence of Plaque rupture)

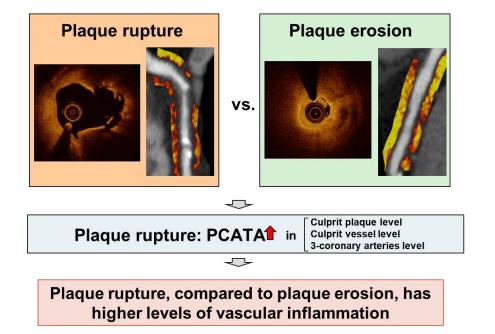
Quartile based on culprit vessel PCAT attenuation

MASSACHUSETTS GENERAL HOSPITAL CORRIGAN MINEHAN HEART CENTER

(Culprit plaque features of vulnerability and PCAT attenuation)

(Univariable and multivariable analysis)

	Univariable		Multivariable				
	Regression coefficient b [95%CI]	P value	Regression coefficient b [95%CI]	P value			
Culprit Plaque PCAT attenuation							
Plaque rupture (vs. Plaque erosion)	3.647 [0.917, 6.376]	0.009	2.902 [0.319, 5.484]	0.028			
Age, y	-0.003 [-0.126, 0.120]	0.961					
Male (vs. Female)	5.960 [1.629, 10.291]	0.007	5.968 [1.999, 9.937]	0.003			
NSTEMI (vs. unstable angina)	4.051 [0.504, 7.598]	0.025	3.710 [0.548, 6.871]	0.021			
HT	2.548 [-0.329, 5.425]	0.083	1.848 [-0.789, 4.485]	0.170			
DL	-1.242 [-3.930, 1.446]	0.365					
DM	0.860 [-1.881, 3.601]	0.538					
Current Smoker	1.480 [-1.193, 4.153]	0.278					
ASA	0.419 [-2.736, 3.573]	0.795					
Statin	-2.048 [-5.116, 1.019]	0.191					
Culprit Vessel PCAT attenuation							
Plaque rupture (vs. Plaque erosion)	2.475 [0.327, 4.623]	0.024	2.429 [0.389, 4.470]	0.020			
Age, y	-0.011 [-0.095, 0.074]	0.806					
Male (vs. Female)	6.039 [3.012, 9.066]	< 0.001	6.009 [3.071, 8.946]	< 0.001			
NSTEMI (vs. unstable angina)	2.078 [-0.631, 4.788]	0.133					
HT	1.600 [-0.708, 3.907]	0.174					
DL	-1.489 [-3.626, 0.649]	0.172					
DM	1.148 [-1.097, 3.393]	0.316					
Current Smoker	1.338 [-0.811, 3.488]	0.222					
ASA	-0.408 [-3.125, 2.309]	0.768					
Statin	-0.995 [-3.458, 1.467]	0.428					


	Univariable		Multivariable				
	Regression coefficient b [95%CI]	P value	Regression coefficient b [95%CI]	P value			
3-coronary arteries PCAT attenuation							
Plaque rupture (vs. Plaque erosion)	1.978 [0.211, 3.745]	0.028	1.730 [0.136, 3.325]	0.033			
Age, y	0.002 [-0.071, 0.075]	0.953					
Male (vs. Female)	5.742 [3.235, 8.249]	< 0.001	5.531 [3.271, 7.791]	< 0.001			
NSTEMI (vs. unstable angina)	0.842 [-1.337, 3.022]	0.449					
HT	2.122 [0.215, 4.009]	0.029	1.527 [-0.153, 3.208]	0.075			
DL	-1.175 [-2.924, 0.574]	0.188					
DM	1.609 [-0.138, 3.357]	0.071	1.386 [-0.287, 3.059]	0.104			
Current Smoker	1.031 [-0.728, 2.790]	0.251					
ASA	-0.357 [-2.574, 1.861]	0.753					
Statin	-0.110 [-2.104, 1.884]	0.914					

Plaque rupture was significantly associated with higher PCAT attenuation values at all 3 levels: culprit plaque, culprit vessel, and 3-coronary arteries.

Conclusions

PCAT attenuation was higher in plaque rupture than in plaque erosion at the culprit plaque, culprit vessel, and all 3 coronary arteries. The results indicate pan-coronary inflammation plays a more important role in plaque rupture than in plaque erosion.

Thank you

1811

ijang@mgh.harvard.edu

