Severe Aortic Stenosis With No Symptoms

Philippe Généreux, MD, FACC

Interventional Cardiologist

Director, Structural Heart Program, Gagnon Cardiovascular Institute, Morristown Medical Center, NJ

Disclosures

Abbott Vascular: Consultant, advisor, speaker Fees; Abiomed: Consultant, advisor, speaker fees; BioTrace Medical: Consultant, advisor, speaker Fees; Boston Scientific: Consultant; Cardiovascular System Inc.: Consultant, PI Eclipse Trial; Edwards LifeSciences: Consultant, advisor, speaker fees, proctor, research grant, PI EARLY-TAVR trial, PI PROGRESS trial; GE Healthcare: Consultant; iRythm Technologies: Consultant; Medtronic: Consultant, advisor, speaker fees; OpSens: Consultant; Pi-Cardia: Equity, consultant; Puzzle Medical: Equity, consultant; Saranas: Equity, consultant; Shockwave: Consultant, speaker fees; Siemens: Consultant; Soundbite Medical Inc.: Equity, consultant; Teleflex: Consultant; 4C Medical: Consultant, PI Feasibility study

Severe AS No Symptoms: Agenda

- Definition
- How to take a medical history
- Role of Stress Test
- Management 2020 Guidelines Updates
- Literature update and Ongoing Trials

DEFINITION OF SEVERE AS WITH NO SYMPTOMS

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2021 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION AND THE AMERICAN HEART ASSOCIATION, INC. PUBLISHED BY ELSEVIER

CLINICAL PRACTICE GUIDELINE: FULL TEXT

2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease

A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines

Developed in collaboration with and endorsed by the American Association for Thoracic Surgery, American Society of Echocardiography, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Anesthesiologists, and Society of Thoracic Surgeons

Writing Committee Members* Catherine M. Otto, MD, FACC, FAHA, *Co-Chair* Rick A. Nishimura, MD, MACC, FAHA, *Co-Chair*

Robert O. Bonow, MD, MS, MACC, FAHA Blase A. Carabello, MD, FACC, FAHA John P. Erwin III, MD, FACC, FAHA Federico Gentile, MD, FACC Hani Jneid, MD, FACC, FAHA Eric V. Krieger, MD, FACC Michael Mack, MD, MACC Christopher McLeod, MBCHB, PhD, FAHA Patrick T. O'Gara, MD, MACC, FAHA† Vera H. Rigolin, MD, FACC, FAHA Thoralf M. Sundt III, MD, FACC, FAHA Annemarie Thompson, MD Christopher Toly

*Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Joint Committee on Clinical Practice Guidelines Liaison.

Otto, Nishimura, Bonow et al. J Am Coll Cardiol. 2021 Feb, 77 (4) e25-e197

VOL. 77, NO. 4, 2021

Severe AS with No Symptoms

TA Stag	BLE 13 Stages of AS	Valve Anatomy	Valve Hemodynamics	Hemodynamic Consequences	Symptoms
C: Asy	nptomatic severe AS				
C1	Asymptomatic severe AS	Severe leaflet calcification/fibrosis or congenital stenosis with severely reduced leaflet opening	 Aortic V_{max} ≥4 m/s or mean ΔP ≥40 mm Hg AVA typically is ≤1.0 cm² (or AVAi 0.6 cm²/m²) but not required to define severe AS Very severe AS is an aortic V_{max} ≥5 m/s or mean P ≥60 mm Hg 	 LV diastolic dysfunction Mild LV hypertrophy Normal LVEF 	 None Exercise testing is reasonable to confirm symptom status
C2	Asymptomatic severe AS with systolic dysfunction	LV Severe leaflet calcification/fibrosis or congenital stenosis with severely reduced leaflet opening	 Aortic V_{max} ≥4 m/s or mean ΔP ≥40 mm Hg AVA typically ≤1.0 cm² (or AVAi 0.6 cm²/m²) but not required to define severe AS 	LVEF <50%	None
		Otto, Nishimura, Bonow et al. J Am Co	oll Cardiol. 2021 Feb, 77 (4) e25–0	e197	

TAKING MEDICAL HISTORY OF PATIENTS WITH SEVERE AS AND NO SYMPTOMS

Taking Medical History of Patients with Severe AS and No Symptoms

Start with open questions

- What do you know about your heart valve issue?
- How have you been feeling lately?

• Then be more specific

- Ask about dyspnea, angina, dizziness, syncope
- Ask to compare to 6-12 months ago
- Ask if they slow down
- Ask about activities that they don't do anymore and why (avoidance?)
- Ask a family member
- If no symptoms or vague symptoms (i.e. fatigue): do low level stress test

STRESS TEST FOR PATIENTS WITH SEVERE AS WITH NO SYMPTOMS

Exercise Testing Severe AS

Recommendations for Diagnostic Testing: Exercise Testing in Patients With AS Referenced studies that support the recommendations are summarized in Online Data Supplement 4.

COR	LOE	RECOMMENDATIONS
2a	B-NR	1. In asymptomatic patients with severe AS (Stage C1), exercise testing is reasonable to assess physiological changes with exercise and to confirm the absence of symptoms (1-4).
3: Harm	B-NR	 In symptomatic patients with severe AS (Stage D1, aortic velocity ≥4.0 m/s or mean pressure gradient ≥40 mm Hg), exercise testing should not be performed because of the risk of severe hemody-
		namic compromise. (5)

Otto, Nishimura, Bonow et al. J Am Coll Cardiol. 2021 Feb, 77 (4) e25-e197

How to do a Treadmill Stress Test for Severe AS Patients with No Symptoms?

1) Choose the *appropriate Treadmill Stress test protocol based on age and sex-gender* maximal predicted METs

2) Do it under close medical supervision

3) Stop the test when symptoms, drop of blood pressure, or arrhythmias occurred

Treadmill Stress Test: Limiting Dyspnea or Fatigue

Expected METs Adjuste	ed for Age and Gender
Male	Female
18-[0.15xAge]	14.7-[0.13xAge]

Abnormal Treadmill Stress Test if *test limiting* dyspnea or fatigue (at ≤60% of Expected METs?*)

*Criteria use in the EARLY TAVR trial

J Am Coll Cardiol.1993; 22:175-182

N Engl J Med. 2005; 353:468-475

Expected METs Adjusted for Age and Gender

	Female	
Age	Expected METs	60% Expected METs
65	6.3	3.8
66	6.1	3.7
67	6.0	3.6
68	5.9	3.5
69	5.7	3.4
70	5.6	3.4
71	5.5	3.3
72	5.3	3.2
73	5.2	3.1
74	5.1	3.0
75	5.0	3.0
76	4.8	2.9
77	4.7	2.8
78	4.6	2.7
79	4.4	2.7
80	4.3	2.6
81	4.2	2.5
82	4.0	2.4
83	3.9	2.3
84	3.8	2.3
85	3.7	2.2
86	3.5	2.1
87	3.4	2.0
88	3.3	2.0
89	3.1	1.9
90	3.0	1.8
91	2.9	1.7
92	2.7	1.6
93	2.6	1.6
94	2.5	1.5
95	2.4	1.4
96	2.2	1.3
97	2.1	1.3
98	2.0	1.2
99	1.8	1.1
100	1.7	1.0

	Male	
Age	Expected METs	60% Expected METs
65	8.3	5.0
66	8.1	4.9
67	8.0	4.8
68	7.8	4.7
69	7.7	4.6
70	7.5	4.5
71	7.4	4.4
72	7.2	4.3
73	7.1	4.2
74	6.9	4.1
75	6.8	4.1
76	6.6	4.0
77	6.5	3.9
78	6.3	3.8
79	6.2	3.7
80	6.0	3.6
81	5.9	3.5
82	5.7	3.4
83	5.6	3.3
84	5.4	3.2
85	5.3	3.2
86	5.1	3.1
87	5.0	3.0
88	4.8	2.9
89	4.7	2.8
90	4.5	2.7
91	4.4	2.6
92	4.2	2.5
93	4.1	2.4
94	3.9	2.3
95	3.8	2.3
96	3.6	2.2
97	3.5	2.1
98	3.3	2.0
99	3.2	1.9
100	3.0	1.8

*Criteria use in the EARLY TAVR trial

Treadmill Stress Test Protocols

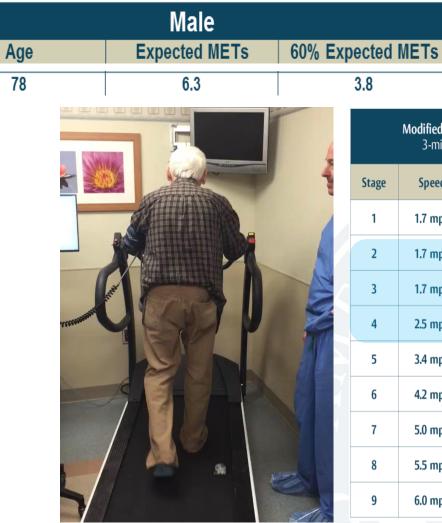
- Protocol selection based on patient profile
 - Modified Bruce Protocol (default)
 - Naughton Protocol (~older, sedentary)
 - Bruce Protocol (~young, active)

	Modified Brue 3-minute				Naughton I 2-minute				Bruce Protoco 3-minute		
Stage	Speed	Incline Grade	METs	Stage	Speed	Incline Grade	METs	Stage	Speed	Incline Grade	METs
1	1.7 mph	0.0%	2	1	1.0 mph	0.0%	2	1	1.7 mph	10.0%	5
2	1.7 mph	5.0%	3	2	2.0 mph	0.0%	3	2	2.5 mph	12.0%	7
3	1.7 mph	10.0%	5	3	2.0 mph	3.5%	5	3	3.4 mph	14.0%	10
4	2.5 mph	12.0%	7	4	2.0 mph	7.0%	6	4	4.2 mph	16.0%	13
5	3.4 mph	14.0%	10	5	2.0 mph	10.5%	7	5	5.0 mph	18.0%	15
6	4.2 mph	16.0%	13	6	2.0 mph	14.0%	8	6	5.5 mph	20.0%	18
7	5.0 mph	18.0%	15	7	2.0 mph	17.5%	10	7	6.0 mph	22.0%	20
8	5.5 mph	20.0%	18	8	3.0 mph	12.5%	11	Note: METs,	metabolic equiv	alents of task	
9	6.0 mph	22.0%	20	9	3.0 mph	15.0%	13				
				10	3.0 mph	17.5%	14				
				11	3.0 mph	20.0%	15				

What Represents a Positive Stress Test?

Usual criteria for Abnormal stress test:

- 1) *Limiting* symptoms (Angina-dyspnea-severe dizziness-syncope)
- 2) *Fall of >10mmhg of systolic blood pressure* from baseline to peak exercise (or lack of increase [<20mmhg] in SBP during exercise)
- 3) *Significant ventricular arrhythmias* (>3 consecutive ventricular premature beats)
- 4) >2mm (vs. 5mm) ST-segment depression?


78 yo Male Severe AS AVA 0.7cm² PV 440 cm/s LVEF 65%

ECG sinus rhythm 70 bpm

NT Pro BNP 67

Modified Bruce protocol Negative

*video used with permissions

Modified Bruce Protocol 3-minute stages						
Stage	Speed	Incline Grade	METs			
1	1.7 mph	0.0%	2			
2	1.7 mph	5.0%	3			
3	1.7 mph	10.0%	5			
4	2.5 mph	12.0%	7			
5	3.4 mph	14.0%	10			
6	4.2 mph	16.0%	13			
7	5.0 mph	18.0%	15			
8	5.5 mph	20.0%	18			
9	6.0 mph	22.0%	20			

Case Review: 87 yr old Female

History

S/p bladder cancer treated 10 yr ago

Osteoporosis

Intermediate risk based on Age/Frailty

Naughton Protocol 2-minute stages					
Stage	Speed	Incline Grade	METs		
1	1.0 mph	0.0%	2		
2	2.0 mph	0.0%	3		
3	2.0 mph	3.5%	5		
4	2.0 mph	7.0%	6		
5	2.0 mph	10.5%	7		
6	2.0 mph	14.0%	8		
7	2.0 mph	17.5%	10		
8	3.0 mph	12.5%	11		
9	3.0 mph	15.0%	13		
10	3.0 mph	17.5%	14		
11	3.0 mph	20.0%	15		

Treadmill Stress Te	est (TST) Summary:
----------------------------	----------	------------

Baseline blood pressure: 130 / 60 mmHg

Female

Expected METs

3.4

60% Expected METs

2.0

- Maximal blood pressure: 160 / 70 mmHg
- Overall condition:

Age

87

- Dizziness: No
- Chest pain: No
- Shortness of breath: No
- Drop in SBP: No
- Stress arrhythmias or conduction abnormalities: No

Naughton Stage 1

Female					
Age	Expect METs		60% Expecte METs		
87	3.4		2	.0	
Naughton Protocol 2-minute stages					
Stage	Speed	Incline Grade		METs	
1	1.0 mph	0	.0%	2	
2	2.0 mph	0	.0%	3	
3	2.0 mph	3	3.5%		
4	2.0 mph	7	. 0 %	6	
5	2.0 mph	1().5%	7	
6	2.0 mph	14	4.0%	8	
7	2.0 mph	17	7.5%	10	
8	3.0 mph	12	2.5%	11	
9	3.0 mph	1	5.0%	13	
10	3.0 mph	17	7.5%	14	
11	3.0 mph	20) .0 %	15	

*video used with permissions

Naugthon Stage 2

Abnormal Stress Test in Asx AS

	Moderate-Severe AS			Severe	AS on	ly
	% Abnormal Stress Test	n	Ν	% Abnormal Stress Test	n	Ν
Takeda et al. 2001	27%	13	49			
Amato et al. 2001				67%	44	66
Alborino et al. 2002	60%	18	30			
Das et al. 2003	29%	19	65			

Abnormal Stress Test in Asx Severe AS:

~50% Abnormal Stress Test

	Pooled	. 36 5%		Pooled	: 48.8%
D	286	784		212	434
			28%	12	43
33%	69	207			
15%	3	20	39%	7	18
27%	51	186			
	15% 33% Range: 15-	15% 3 33% 69 286	15% 3 20 33% 69 207 286 784 Range: 15- Pooled: 36 5%	15% 3 20 39% 33% 69 207 28% 286 784 Range: 15- Pooled: 36 5%	15% 3 20 39% 7 33% 69 207 28% 12 286 784 212 Range: 15- Range: 28-

Meta-Analysis of Prognostic Value of Stress Testing in Patients With Asymptomatic Severe Aortic Stenosis

Asim M. Rafique, MD^a, Simon Biner, MD^{a,b}, Indraneil Ray, MD^a, James S. Forrester, MD^a, Kirsten Tolstrup, MD^a, and Robert J. Siegel, MD^{a,*}

Study or Subgroup	Normal Stress Test	Abnormal Stress Test	Weight	Odds Ratio M-H, Random, 95% Cl	Odds Ratio M-H, Random, 95% CI			
Peidro 2007	0/35	2/67	32.2%	0.37 [0.02, 7.90]				
Lancellotti 2005	0/43	3/26	33.5%	0.08 [0.00, 1.56]	· ·			
Das 2005	0/79	0/46						
Amato 2001	0/22	4/44	34.3%	0.20 [0.01, 3.89]		_		
Total	0/179	9/183	100.0%	0.18 [0.03, 1.01]				
Heterogeneity: Tau ² = 0.	00: Chi² = 0.52 df:	= 2 (P = 0 77): 1 ² = 0	N.		0.01 0.1 1	10 100		
Test for overall effect: Z		-2(1 - 0.77),1 - 0	10		Reduced risk	Increased risk		

Figure 3. Pooled outcome estimates of risk for sudden cardiac death. None of the patients with normal stress test results experienced sudden death. Squares represent effect sizes; extended lines indicate 95% CIs; diamond represents total effect size.

Abnormal stress test associated with ~6 fold increase in Cardiac Death

Rafique et al. Am J Cardiol 2009;104:972-977

MANAGEMENT AND AVR INDICATIONS FOR SEVERE AS AND NO SYMPTOMS

Recommendations for Timing of Intervention of AS Referenced studies that support the recommendations are summarized in Online Data Supplements 4, 6-10.

AVR for Severe AS	COR	LOE	RECOMMENDATIONS
no Sx	1	A	1. In adults with severe high-gradient AS (Stage D1) and symptoms of exertional dyspnea, HF, angina, syncope, or presyncope by history or on exercise testing, AVR is indicated (74-80).
3 Class 1	1	B-NR	2. In asymptomatic patients with severe AS and an LVEF <50% (Stage C2), AVR is indicated (81-84).
	1	B-NR	3. In asymptomatic patients with severe AS (Stage C1) who are undergoing cardiac surgery for other in- dications, AVR is indicated (57,63,85-87).
	1	B-NR	4. In symptomatic patients with low-flow, low-gradient severe AS with reduced LVEF (Stage D2), AVR is recommended (88-95).
	1	B-NR	5. In symptomatic patients with low-flow, low-gradient severe AS with normal LVEF (Stage D3), AVR is recommended if AS is the most likely cause of symptoms (96-98).
	2a	B-NR	6. In apparently asymptomatic patients with severe AS (Stage C1) and low surgical risk, AVR is reasonable when an exercise test demonstrates decreased exercise tolerance (normalized for age and sex) or a fall in systolic blood pressure of ≥10 mm Hg from baseline to peak exercise (61,63,64,99).
4 Class 2a	2a	B-R	 In asymptomatic patients with very severe AS (defined as an aortic velocity of ≥5 m/s) and low surgical risk, AVR is reasonable (86,100-104).
	2a	B-NR	 In apparently asymptomatic patients with severe AS (Stage C1) and low surgical risk, AVR is reasonable when the serum B-type natriuretic peptide (BNP) level is >3 times normal (101,105-107).
	2a	B-NR	 In asymptomatic patients with high-gradient severe AS (Stage C1) and low surgical risk, AVR is reasonable when serial testing shows an increase in aortic velocity ≥0.3 m/s per year (108,109).
1 Class 2b	2b	B-NR	10. In asymptomatic patients with severe high-gradient AS (Stage C1) and a progressive decrease in LVEF on at least 3 serial imaging studies to <60%, AVR may be considered (81-84,102).
	2b	C-EO	11. In patients with moderate AS (Stage B) who are undergoing cardiac surgery for other indications, AVR may be considered.

Otto, Nishimura, Bonow et al. J Am Coll Cardiol. 2021 Feb, 77 (4) e25-e197

LITERATURE UPDATE AND ONGOING TRIALS

STATE-OF-THE-ART REVIEW

Natural History, Diagnostic Approaches, and Therapeutic Strategies for Patients With Asymptomatic Severe Aortic Stenosis

meeMari

CME

Philippe Généreux, MD,^{a,b,c} Gregg W. Stone, MD,^{a,b} Patrick T. O'Gara, MD,^d Guillaume Marquis-Gravel, MD,^c Björn Redfors, MD, PhD,^{b,e} Gennaro Giustino, MD,^f Philippe Pibarot, DVM, PhD,^g Jeroen J. Bax, MD, PhD,^h Robert O. Bonow, MD,ⁱ Martin B. Leon, MD^{a,b}

Studies Comparing AVR vs. Observation in Asymptomatic Severe AS Patients; N=2,486

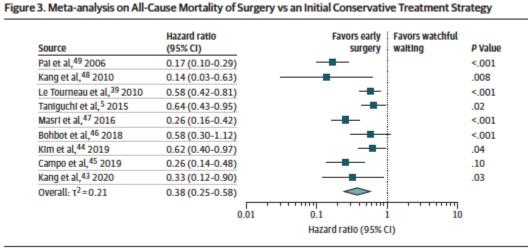
Authors	AS definition	Ν	N Age		Follow-up (median)	
Pellikka et al.1990	Severe AS; Doppler PV ≥4m/s	143 30 AVR 113 Medical	72 (mean) 40 to 94	38%	AVR 21 m Medical 20 m	
Pai et al. 2006	Severe AS AVA <0.8cm ²	338 99 AVR 239 Medical	71±15	49%	3.5 y	
Kang et al. 2010	Very severe AS AVA \leq 0.75 cm ² AND PV \geq 4.5 m/s or a MG \geq 50 mmHg	197: 102 AVR 95 Medical	63±12	50%	AVR 1265 d Medical 1769 d	
Taniguchi et al. 2015	Severe AS AVA: <1cm2 MG: >40mmhg PV: >4m/s	1808: 291 AVR 1517 Medical	AVR 71.6±8.7 Medical 77.8±9.4	60%	1361 d	

All-Cause Mortality AVR vs. Medical Therapy in Asymptomatic Severe AS; N=2,486

	Early A	VR	MT		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight M-H, Random, 95% Cl		M-H, Random, 95% Cl
Kang et al	3	102	10	95	13.9%	0.28 [0.08, 0.98]	
Pai et al	10	99	147	239	31.4%	0.16 [0.09, 0.30]	- - -
Pellikka et al	2	30	14	113	11.5%	0.54 [0.13, 2.24]	
Taniguchi et al	40	291	542	1517	43.2%	0.38 [0.29, 0.52]	-
Total (95% CI)		522		1964	100.0%	0.29 [0.17, 0.51]	◆
Total events	55		713				
Heterogeneity: Tau ² = 0.16; Chi ² = 6.91, df = 3 (P = 0.07); I ² = 57%					7); l² = 57	%	
Test for overall effect: Z = 4.35 (P < 0.0001)							0.01 0.1 1 10 100 Early AVR MT

Unadjusted: ~3.5 fold increase in all-cause Mortality

Généreux et al. J Am Coll Cardiol 2016;67:2263-88


JAMA Cardiology | Original Investigation

Natural History of Asymptomatic Severe Aortic Stenosis and the Association of Early Intervention With Outcomes A Systematic Review and Meta-Analysis

Brigitta Gahl, PhD; Mevlüt Çelik, MD; Stuart J. Head, MD, PhD; Jean-Louis Vanoverschelde, MD, PhD; Philippe Pibarot, DVM, PhD; Michael J. Reardon, MD; Nicolas M. van Mieghem, MD, PhD; A. Pieter Kappetein, MD, PhD; Peter Jüni, MD; Bruno R. da Costa, PhD

9 studies; 3904 patients; median FU of 5.0 (3.7-5.7) years ~2.5 x Increase in Mortality with Clinical Surveillance

HR, 0.38; 95% CI, 0.25-0.58

Gahl et al. JAMA Cardiol. 2020 Jul 8;

Clinical Outcome in Asymptomatic Severe Aortic Stenosis

Insights From the New Proposed Aortic Stenosis Grading Classification

Patrizio Lancellotti, MD, PHD,* Julien Magne, PHD,* Erwan Donal, MD, PHD,† Laurent Davin, MD,* Kim O'Connor, MD,*‡ Monica Rosca, MD,* Catherine Szymanski, MD,* Bernard Cosyns, MD, PHD,§ Luc A. Piérard, MD, PHD*

Liège and Brussels, Belgium; Rennes, France; and Quebec, Canada

"Truly" Asymptomatic Severe AS

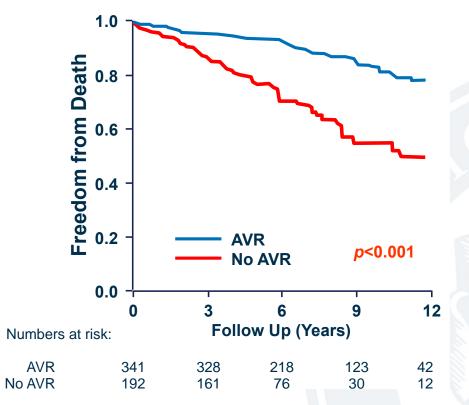
N=150 with AVA <1cm² (no gradient criteria)

Exclusion: 1) LVEF <55% 2) other moderate-severe valve disease 3) Atrial Fibrillation 4) COPD 5) *positive stress test* 6) incapacity to perform stress test *Endpoint:* CV death or need for AVR motivated by the development of symptoms or LVEF<50%)

Clinical Outcome in Asymptomatic Severe Aortic Stenosis

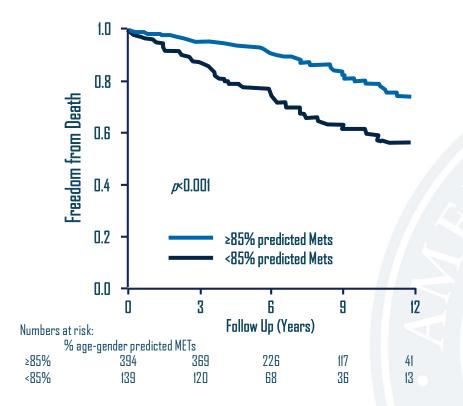
Insights From the New Proposed Aortic Stenosis Grading Classification

- 51% (76/150) events at mean follow-up 27 months
- 6% (9/150) deaths; 5.3% (8/150) cardiac deaths
- 2% (3/150) sudden deaths without preceding symptoms
- 70 (47%) had indication for AVR:
 - Spontaneous symptoms: 58 (83%)
 - Progressive AS: 2 (3%)
 - Positive stress test during follow-up: 8 (11%)
 - LVEF <50%: 2 (3%)


Valvular Heart Disease

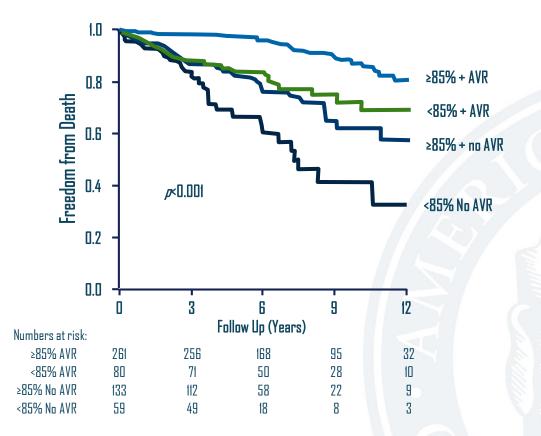
Predictors of Long-Term Outcomes in Asymptomatic Patients With Severe Aortic Stenosis and Preserved Left Ventricular Systolic Function Undergoing Exercise Echocardiography

Ahmad Masri, MD; Andrew L. Goodman, MD; Tyler Barr; Richard A. Grimm, MD; Joseph F. Sabik, MD; A. Marc Gillinov, MD; L. Leonardo Rodriguez, MD; Lars G. Svensson, MD, PhD; Brian P. Griffin, MD; Milind Y. Desai, MD


- 533 Asymptomatic Severe AS pts; mean STS 2.9%
- Single center, from January 2001 and December 2012
- Exclusion:
 - LVEF <50%</p>
 - Severe tricuspid/mitral stenosis/regurgitation
 - Underwent TAVR
 - Incapacity to perform stress test
- Endpoint: All-cause mortality

Severe Asymptomatic AS; n=533 pts. Mortality According to AVR vs. no AVR

Masri et al. *Circ Cardiovasc Imaging* 2016;9:e004689


Severe Asymptomatic AS; n=533 pts. Mortality According % Predicted Mets

Masri et al. *Circ Cardiovasc Imaging* 2016;9:e004689

Severe Asymptomatic AS; n=533 pts.

Mortality According % Predicted Mets and AVR

Masri et al. *Circ Cardiovasc Imaging* 2016;9:e004689

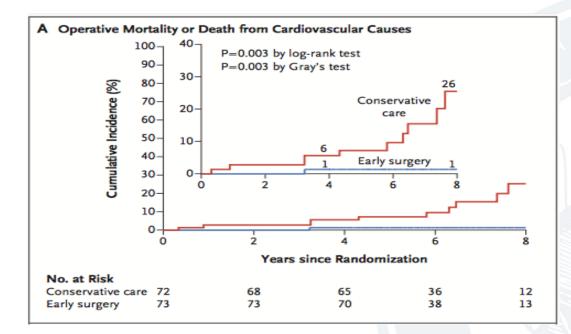
The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JANUARY 9, 2020

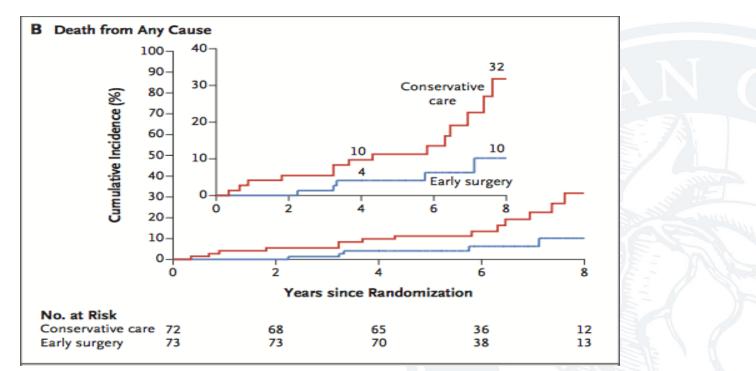
VOL. 382 NO. 2

Early Surgery or Conservative Care for Asymptomatic Aortic Stenosis

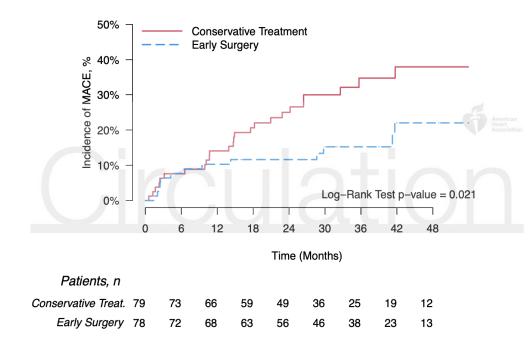

Duk-Hyun Kang, M.D., Ph.D., Sung-Ji Park, M.D., Ph.D., Seung-Ah Lee, M.D., Sahmin Lee, M.D., Ph.D., Dae-Hee Kim, M.D., Ph.D., Hyung-Kwan Kim, M.D., Ph.D., Sung-Cheol Yun, Ph.D., Geu-Ru Hong, M.D., Ph.D., Jong-Min Song, M.D., Ph.D., Cheol-Hyun Chung, M.D., Ph.D., Jae-Kwan Song, M.D., Ph.D., Jae-Won Lee, M.D., Ph.D., and Seung-Woo Park, M.D., Ph.D.

145 patients Young Bicuspid Critical AS (PV~5.0) Normal EF No treadmill stress test 50% Mechanical valve

Table 1. Characteristics of the Patients at Baseline. ^o		
Characteristic	Conservative Care (N = 72)	Early Surgery (N=73)
Age — yr	63.4±10.7	65.0±7.8
Male sex — no. (%)	34 (47)	37 (51)
Body-surface area — m ²	1.64±0.17	1.69±0.17
Body-mass index†	24.0±2.6	24.7±3.4
Diabetes — no. (%)	7 (10)	13 (18)
Hypertension — no. (%)	39 (54)	40 (55)
Smoking — no. (%)	21 (29)	19 (26)
Hypercholesterolemia — no. (%)	42 (58)	41 (56)
Coronary artery disease — no./total no. (%)‡	1/59 (2)	5/72 (7)
Previous PCI — no. (%)	1 (1)	3 (4)
Previous stroke — no. (%)	3 (4)	3 (4)
Peripheral vascular disease — no. (96)	2 (3)	1 (1)
Atrial fibrillation — no. (%)	6 (8)	3 (4)
Serum creatinine level — mg/dl	0.83±0.16	0.84±0.23
EuroSCORE II score — %§	0.9±0.4	0.9±0.3
Medication — no. (%)		
Angiotensin-converting-enzyme inhibitor	0	4 (5)
Angiotensin-receptor blocker	28 (39)	24 (33)
Calcium antagonist	20 (28)	19 (26)
Beta-blocker	8 (11)	13 (18)
Diuretic	17 (24)	13 (18)
Statin	32 (44)	34 (47)
Echocardiographic findings		
Cause of aortic stenosis — no. (%)		
Bicuspid aortic valve	39 (54)	49 (67)
Degenerative valvular disease	26 (36)	22 (30)
Rheumatic valvular disease	7 (10)	2 (3)
Peak aortic jet velocity — m/sec	5.04±0.44	5.14±0.52
Transaortic pressure gradient — mm Hg		
Peak	102.5±18.4	106.9±21.9
Mean	62.7±12.4	64.3±14.4
Aortic valve		
Area — cm ²	0.64±0.09	0.63±0.09
Area index — cm ² /m ²	0.39±0.07	0.38±0.06
Left ventricular mass index - g/m ²	133.7±31.1	135.6±38.2
Left ventricular ejection fraction %	64.8±4.1	64.8±5.2



Early Surgery or Conservative Care for Asymptomatic Aortic Stenosis



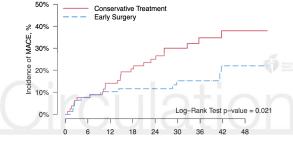
The NEW ENGLAND JOURNAL of MEDICINE

Early Surgery or Conservative Care for Asymptomatic Aortic Stenosis

AVATAR Trial

Bankovic et al. Circulation 2021 N=157 pts **SAVR only**

Severe AS with No Symptoms EARLY AVR vs. Clinical Surveillance



The NEW ENGLAND JOURNAL of MEDICINE

Circulation

A Operative Mortality or Death from Cardiovascular Causes 40 100 -P=0.003 by log-rank test 90 P=0.003 by Gray's test 30 80-Cumulative Incidence (%) 70. Conservative 20 care 60-50-10 40-Early surger 30-20-10-Years since Randomization No. at Risk Conservative care 72 36 68 65 70 Early surgery 73 73 38

Kang et al. NEJM 2019 N=145 pts SAVR only Critical AS No stress test

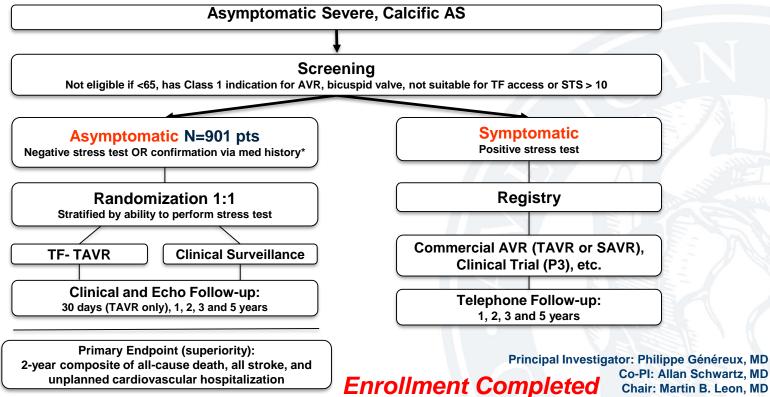
Time (Months)

Patients, n									
Conservative Treat.	79	73	66	59	49	36	25	19	12
Early Surgery	78	72	68	63	56	46	38	23	13

Bankovic et al. Circulation 2021 N=157 pts **SAVR only**

2 small randomized trials; SAVR only

12


13

Severe AS No Symptoms: Ongoing Randomized Trials

- EARLY-TAVR trial
- EVOLVED trial
- ESTIMATE trial

Chair: Martin B. Leon, MD