Bi-Atrial Geometrical Changes Following Secundum Atrial Septal Defect Closure Using Magnetic Resonance Imaging and Their Effect on Electrical Changes

> Noha Mohamed Gamal MD¹, Mohamed Alaa Nady MD², Amr Mansour MD³

Cardiology department, Assiut university hospital, Egypt ¹, Cardiothoracic surgery, Assiut university hospital, Egypt ², Cardiology department, Ain Shams University Hospital, Egypt ³

Disclosure

- The Authors of this abstract have nothing to disclose
- No conflict of interest

Background

 Chronic atrial stretch caused by atrial septal defect (ASD) results in atrial mechanical and electrical remodeling, This is manifested as prolonged Pwave duration, and P wave dispersion and has been proposed as a substrate for atrial arrhythmia later on.

Background (cont.)

 We studied atrial geometric and volumetric changes 6 months after percutaneous and surgical Secundum ASD closure in Adult patients by CMR and compared the effect of these two methods of closure on P wave dispersion.

Methods

• A 12- leads ECG was recorded at a speed of 50mm/s and amplitude of

1mV/cm before and 6 months after ASD closure.

 P wave duration: Distance between the junction of baseline with the point of the earliest and latest P-wave activity. The longest P wave duration was noted as P wave maximum (P max)and the shortest duration as P wave minimum (P min).

Methods (cont.)

• P wave dispersion (Pd): defined as the difference between the maximum

and the minimum recorded P-wave duration.

CMR assessment pre and 6 months post-ASD closure using a 1.5 Tesla
MRI scanner (Ingenia Philips). Cine Steady-State Precession (SSFP)
ECG gated sequences in 2, 3, 4 chambers were recorded.

Methods (cont.)

 The left atrium (LA) volumes were measured by manual tracing of the endocardial contours in 2- & 3- and 4-ch SSPS cine images with the exclusion of the left atrial appendage and pulmonary veins. Longitudinal and transverse diameters were measured in the 4 and 2 chamber views, figure 1. LA anteroposterior diameter was measured in the 3-chamber view

Methods (cont.)

- the maximum diameters and volumes were measured in the 4- and 2
 - chambers views. The same method was used to calculate the maximum
 - and minimum volumes of the RA, the cava veins were excluded, but the
 - atrial appendage was included. figure 2.

Figure 1: Cine SSFP 4 chamber MRI view in ASD case preclosure showed LA vertical & horizontal diameters and area measures.

Figure 2 : Cine SSFP 4 chamber MRI view in ASD case preclosure showed RA vertical & horizontal diameters and area measures.

Results

- Thirty adult patients with isolated secundum ASD were included in a prospective study. (15 patients had successful transcatheter ASD device closure and 15 age and sex matched group had surgical closure. The majority (66%) were females under the age of 40)
- Assessment of the mechanical remodelling by CMR:
- CMR showed normalization of QP/QS (from 2.5 to 1) in both groups at follow up indicating complete abolishment of shunt.

- Assessment of the electrical remodelling parameters:
 - When compared to baseline values, both groups showed a nonsignificant reduction in P wave dispersion- after ASD closure with no
 - significant difference between the two methods of closure, table 1.

	Group 1 (Device closure)			Group 2 (Sur		
	Before	After	P value	Before	After	P value
Pd (ms)	29.33 ± 10.32	27.33 ± 9.61	0.42	32 ± 12.64	28 ± 10.14	0.08

• Parameters of Right Atrium among studied patients

• RA maximal and minimal volumes decreased significantly in both groups as compared to the baseline values (P value <0.001), Device closure had significant lower minimum volume after closure (20.66 \pm 7.88 vs. 30.24 \pm 11.38 (mm); *P*= 0.01).

• Also, RA's function after closure was significantly higher in case of device closure (58.87 \pm 7.54 vs.46.40 \pm 5.11 (%), *P*< 0.001), table 2.

	Group 1 (Device closure)			Group 2 (surgical closure)		
	(n	= 15)		(n=		
	Before closure	After closure	P value	Before closure	After closure	P value
RA maximal	74.53 ± 23.98	46.88 ± 12.77	<0.001	81.90 ± 30.07	55.38 ± 18.03	<0.001
volume (ml)						
RA minimal	37.71 ± 15.43	20.66 ± 7.88	<0.001	41.82 ± 21.46	30.24 ± 11.38	0.01
volume (ml)						
RA EF (%)	54.60 ± 6.60	58.87 ± 7.54	0.001	52.87 ± 7.54	46.40 ± 5.11	0.01

TCTAP 2022

Figure 3 : Cine SSFP 4 chamber MRI view in A) transcatheter closed case by ASO B) surgically closed ASD with complete revolution of both atria and RV .

- Parameters of left Atrium among studied patients
- There was a decrease in LA volume after removal of shunt and an improvement in LV filling.
- However, it was insignificant in comparison to the baseline measurements and was similar in both groups. table 3

	Group 1 (Devi	ice closure)		Group 2 (su		
	(n= 1		(n:			
	Before closure	After closure	P value	Before closure	After closure	P value
LA maximal volume (ml)	99.23 ± 24.20	92.33 ± 25.51	0.12	90.13 ± 33.81	91.30 ± 29.72	0.11
LA minimal volume (ml)	45.18 ± 20.19	42.73 ± 18.46	0.13	38.30 ± 18.14	35.83 ± 15.69	0.14
LA EF (%)	54.63 ± 7.72	57.36 ± 9.31	0.5	57.90 ± 9.58	57.36 ± 9.31	0.7

TCTAP 2022

Conclusion / Take-home Message

- Bi-atrial electrical changes in middle-aged ASD patients do not improve 6 months after percutaneous and surgical ASD closure despite significant changes in right atrial volumes and geometry.
- This indicates a poor correlation between mechanical and electrical remodeling in adult patients.
- Larger studies and long term follow up is needed to correlate this finding with the future risk of atrial arrhythmia.
- Whether earlier closure of ASD improve electrical remodeling, is an issue of further studies.