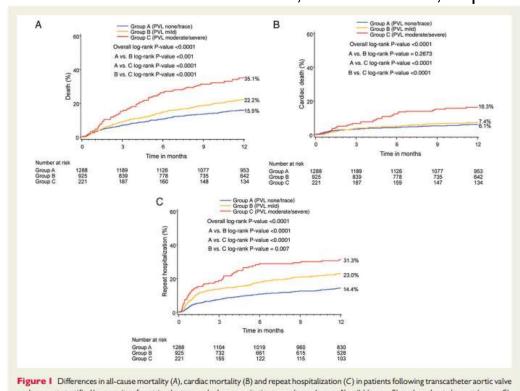
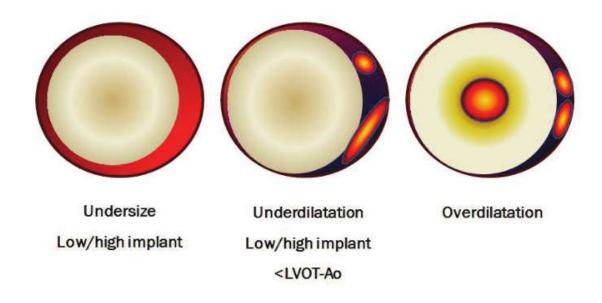

Predicting paravalvular regurgitation after TAVI


Jeehoon Kang, MD Seoul National University Hospital

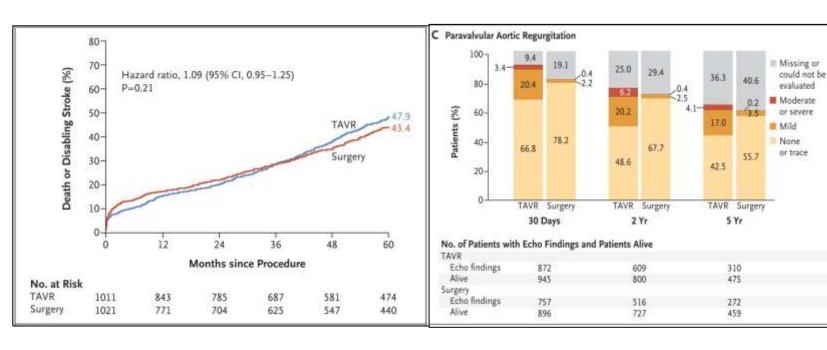
- Transcatheter aortic valve implantation (TAVI) is the new standard treatment of severe AS.
- Recent trials report that TAVI is superior/non-inferior to surgery in low surgical risk patients.
- However, paravalvular leakage (PVL) remains as one of the main limitations of TAVI procedure

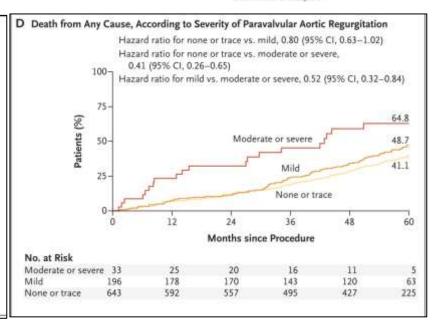


Popma et al. N Engl J Med. 2019;380:1706, Reardon et al. N Engl J Med. 2017;376:1321, Sinning et al JACC 2012;59:1134

- PVL is associated with increased mortality. Directly or indirectly? Still unknown.
- Factors associated with PVL
 - Anatomical, clinical risk factors
 - AV, aortic annulus calcification, anatomy of the aortic annulus, LVOT-ascending aorta angle
 - Valvular, Procedural factors
 - Generation of valve, size of valves, depth of implantation, pre/post balloon angioplasty, etc.

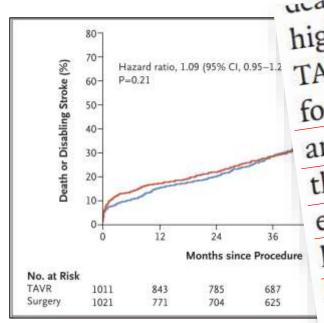
replacement stratified by severity of post-implant paravalvular regurgitation: none/trace (group A), mild (group B), and moderate/severe (group C).




The NEW ENGLAND
JOURNAL of MEDICINE

PVL may be MORE important in long-term

Five-Year Outcomes of Transcatheter or Surgical Aortic-Valve Replacement

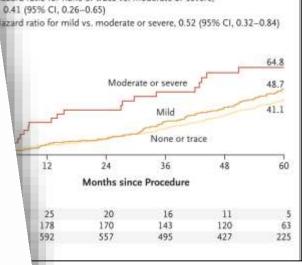

R.R. Makkar, V.H. Timurami, M.J. Mazh, E.K. Kodali, S. Kapudia, J.G., Wattis, S. H. Youn, A. Timita, L.G. Simmour, H.C. Pierrimann, W.Y. Sazbu, D.C. Miller, E. Saller, D.J. Cerban, T.M. Devey, V. Balafarami, M.R. Williams, D.J. Kereslader, A. Zajarias, H.L. Glesbon, M.R. Williams, E.W. Haddoon, D.L. Bloom, W.F. Fedarer, M.J. Rosco, P. Pifocot, R.T. Hahn, W.A. Juber, E. Rogers, K. Xu, J. Wheeler, M.C. Mu, C.R. Smith, and M.B. Leon, für this PARTISTEE? Threetingshore?

 "In landmark analyses from 2 to 5 years after the procedure, we observed a higher incidence of death from any cause or disabling stroke and a higher incidence of death from any cause with TAVR than with surgery"

• PVL may be MORE important in long-terrusaving shore and a with

higher incidence of death from any cause with TAVR than with surgery. Possible explanations for the higher mortality during this time period among patients in the TAVR group than among those in the surgery group may be the negative effect of increased moderate or severe paravalvular regurgitation after TAVR or the higher prevalence of untreated clinically significant coronary disease in the TAVR cohort than in the surgery cohort. Several previous studies have shown an

The NEW ENGLAND JOURNAL of MEDICINE


Five-Year Outcomes of Transcatheter or Surgical Aortic-Valve Replacement

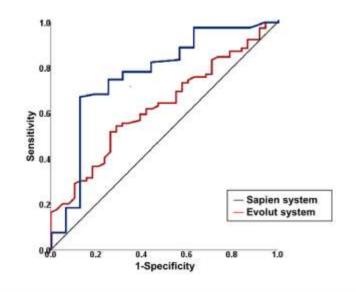
B.R. Makkar, V.H. Thourani, M.J. Mach, E.K. Kodali, S. Kapurlia, J.G. Webb, S.-H. Yoon, A. Trento, L.G. Seemuur H.C. Hermann, W.Y. Szebi, D.C. Miller, L. Safer, D.J. Cohen, T.M. Devey, V. Balufianni, M.R. Williams, J. Keretakes, A. Zajarias, K.L. Greaton, B.H. Whitamart, R.W. Hadson, D.L. Brown, W.F. Feavon, M.J. Rosso. Pitorot, R.T. Halin, W.A. Juber, E. Rogers, K. Xu, J. Wheeler, M.C. Alu, C.R. Smith, and M.B. Leon,

use, According to Severity of Paravalvular Aortic Regurgitation

fazard ratio for none or trace vs. mild, 0.80 (95% CI, 0.63-1.02) lazard ratio for none or trace vs. moderate or severe.

0.41 (95% CI, 0.26-0.65)

association between moderate or severe paravalwith TAVR than with st vular regurgitation and mortality after TAVR, 24,25 mortality after incidence of death from any cause "In landmark analyses


How can we reduce (prevent) PVL?

#1. Adequate Valve selection and sizing

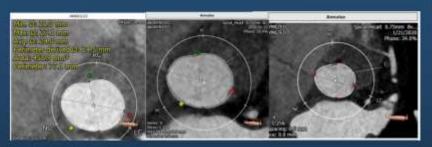
#2. Precise evaluation and management

Predictors of PVL

	Univariable An	alysis	Multivariable A	nalysis
Total population	OR (95% CI)	P value	OR (95% CI)	P value
Leakage (-) proof valve	2.24 (1.21–4.13)	0.010 [*]	3.19 (1.62–6.30)	0.001*
OI per a decrease by 5%	1.31 (1.05–1.62)	0.015*	1.45 (1.15–1.83)	0.001*
Total calcium amount >800	1.39 (0.72–2.70)	0.328		
Calcium difference >200	1.23 (0.67–2.28)	0.507		
Commissure calcification	1.85 (0.99–3.45)	0.051		
Eccentricity index	1.00 (0.96–1.05)	0.889		

	COV of OI	Sen	Spe	AUC (95% CI)	P value
Sapien system	10.2%	0.663	0.875	0.769 (0.628-0.909)	0.001
Evolut system	17.6%	0.552	0.711	0.639 (0.532-0.746)	0.018

	Multivariable An	nalysis		Multivariable Ana	lysis
Valve without leakage-proof function	OR (95% CI)	P value	Valve with leakage-proof function	OR (95% CI)	P value
Total calcium amount >800	4.22 (1.52–11.71)	0.006*			
OI per a decrease by 5%	1.65 (1.19–2.28)	0.003*	OI per a decrease by 5%	2.983 (1.54–5.79)	0.001*
			Evolut / PRO vs Lotus/Sapien 3	27.67 (5.54–138.31)	<0.001*
			(Evolut / PRO vs Sapien 3)	25.50 (4.49–144.75)	<0.001 [*]
			(Evolut / PRO vs Lotus)	34.48 (5.99–200.00)	<0.001 [*]


Our routine practice

TAVI Case preview CT angiography (20-02-11)

Seoul National University Hospital Cardiovascular Center

TAVI Case preview Annulus measurement

Medtronic Min diameter 21 0mm Max diameter 27.1mm AVG diameter 24 0mm

Edwards Min diameter 21.9mm Max diameter 27 4mm AVG diameter 24.6mm

Min diameter 21.8mm Max diameter 26.8mm AVG diameter 24 3mm

Seoul National University Hospital Cardiovascular Center

TAVI Case preview Measurement of dimensions (Edwards)

Miles seems bear	m (well	MI	340	147	pa.	312	AA	18.7	200	Mil	94	44	BI	100	(83)	NX	194	22	(8.6	901	Ai.	*	300	76.0	300	96.4	Att	Mr.	44	Att.	(9)
Minister Street		80	100	*	***	*	186	120	SA.	140	14	700	580	116	40	-	100	111	Mi.	in.	126	66	160	-	838	lan:	811	96	100	190	120
	2iee																														
Liberale that then Light	Die																														
tiles Bull	Non.	358	184	81	38	38	UK	ALL	43	-88		-14	11	**																	
2000	Si ten					.01	112	100	201	363	ma	162	153	101	11.0	78.8	14	64	14	42	10	18	42	3.2	-61	41	180	14	19.	61	-

Annulus area = 476.6 mm² Area driven diameter = 24.6mm

Sapien-3 26mm

: 13.6% : 11.3% Nominal: 8.9%

TAVI Case preview Measurement of dimensions

	TTE	CTCA	Edwards	Medtronic	Boston
Annulus	19.0	22.91*27.00 (mean,24.9)	21.9*27.4 (mean, 24.6)	21.0*27.1 (mean, 24.0)	21.8*26.8 (mean, 24.3)
Annulus perimeter		77.96	78.3	771	77.2
Annulus area			476.6	458,9	463.1
St juction/ annulus ratio			1.16	1.18	1.21
LVOT/ annulus ratio			1.00	1.01	1.00
Height of coronary os		Lt: 11.13 Rt: 12.44	Lt: 11.0 Rt: 14.1	Lt:11.5 Rt:13.5	Lt:12.5 Rt:15.0
St junction height			Lt: 18.6 Rt: 19.7	Lt:19.0 Rt:17.2	Lt:19.6 Rt:18.4
Sinus of Valsalva	30.0		31.5		
Sinotubular junction	23.0	27.03	28.5	29.0	28.9
Ascending aorta	35.0	34.0 Secul Na	tional University	32.3 Hospital Cardio	35.3 vascular Center

TAVI Case preview Measurement of dimensions (boston)

구종태	Patient	Lotus 25mm size	Difference	Oversize %
Area derived (mm)	243	25	-0.7	2.9%
Perimeter derived (mm)	24.6	25	-0.4	1.6%

Annulus area = 463.1 mm² Area driven diameter = 24.3mm

TAVI Case preview Measurement of dimensions (Medtronic)

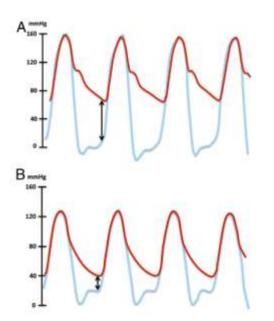
Diameter (mm)	23	23.5	24	2	.5	21	25.5	26	26.5	27	27.5	28	28.5	29	29.5	30
Perimeter	72.2	738	75.4	7	9	78	80.1	81.6	83.2	84.8	86.4	87,9	89.5	91.1	92.6	94.2
EvR/Pro 23					T											
EvR/Pro.26	13.0%	10.6%	83%		Ħ											
EvR/Pro 29	26 1%	23.4%	20 8%	18	an.	15 C	610.75	1103	9.4%	7.4%						
EvR 34					П			30 8%	28.3%	25.9%	23.6%	21.5%	19.3%	17.2%	15.9%	13,39

Annulus perimeter = 77.1mm Annulus diameter = 24.5mm

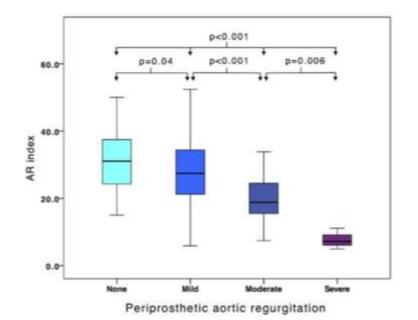
18.4% oversizing (perimeter annulus 기준)

Seoul National University Hospital Cardiovascular Center

Seoul National University Hospital Cardiovascular Center

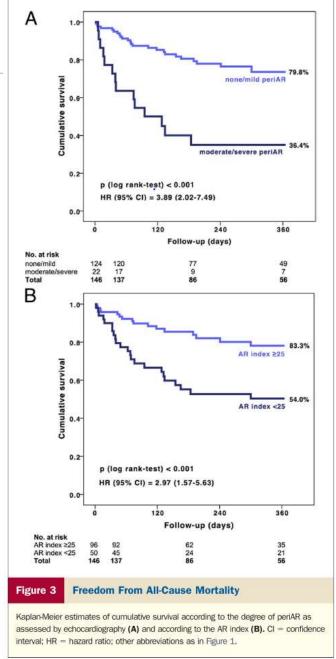

How can we reduce (prevent) PVL?

#1. Adequate Valve selection and sizing


#2. Precise evaluation and management

How can we assess AR

- AR index: A simple, reproducible, and point-of-care assessment of periAR during TAVI
- Patients (N=146) who underwent TAVI with CoreValve Prosthesis
- Primary End point: 1 year all-cause mortality



AR index = [DBP-LVEDP] / SBP) * 100

The AR index according to the degree of periAR as assessed by echocardiography after transcatheter aortic valve implantation. Abbreviations as in Figure 1.

Sinning, J.M., et al., J Am Coll Cardiol, 2012

How can we assess AR

Is the AR index Too simple?

- Time-integrated aortic regurgitation (TIAR) index
 - [LV Ao diastolic pressure time integral] / [LV systolic pressure time integral] × 100.

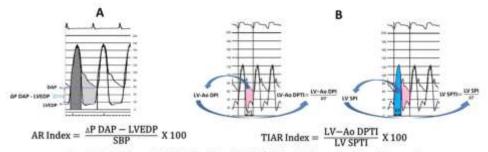
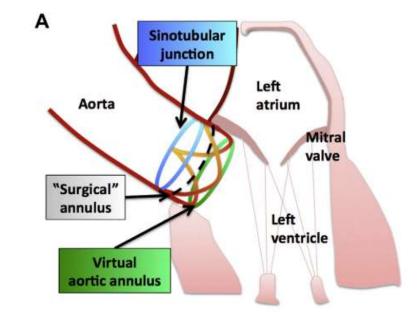
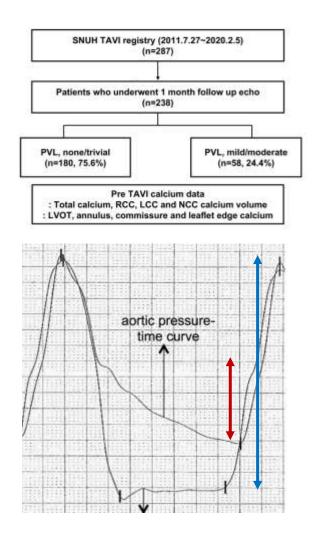
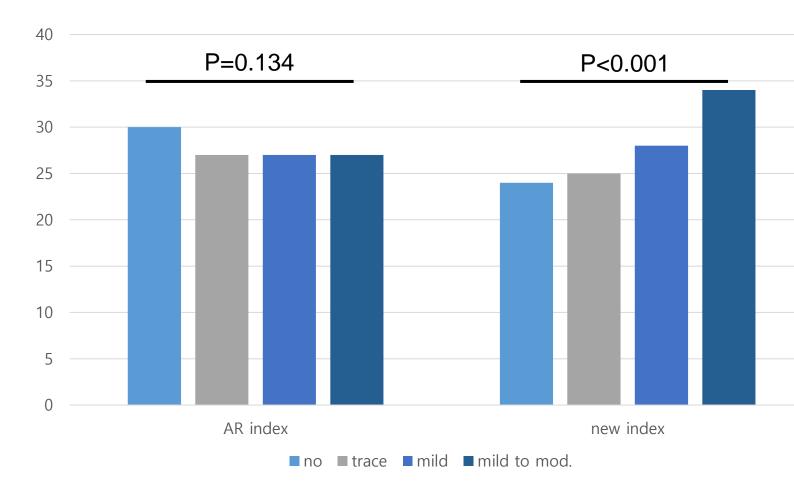
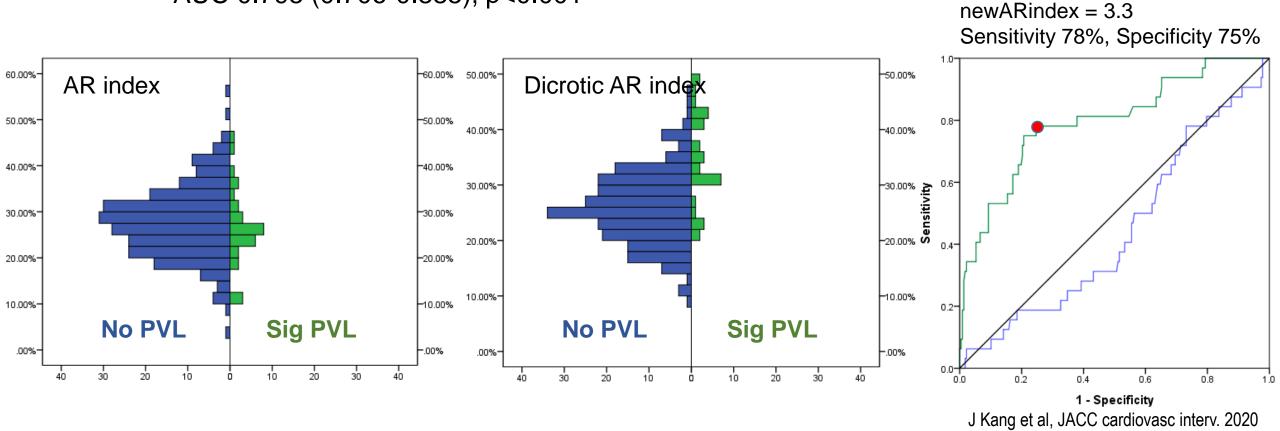



Fig. 1. Calculation of the AR index (A) and the TIAR index (B). Ao, aortic; AR, aortic regurgitation; DAP, diaatolic aortic pressure; DPI; diaatolic pressure integral; DPTI, diaatolic pressure time integral; DT, diaatolic time; LV, left ventricular; LVEDP, left ventricular end-diaatolic pressure; SBP, systolic blood pressure; SPI, systolic pressure integral; SPTI, systolic pressure time integral; ST, systolic time; TIAR, time-integrated aortic regurgitation.

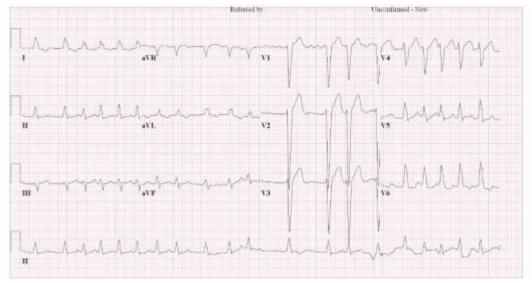

A New AR index is needed

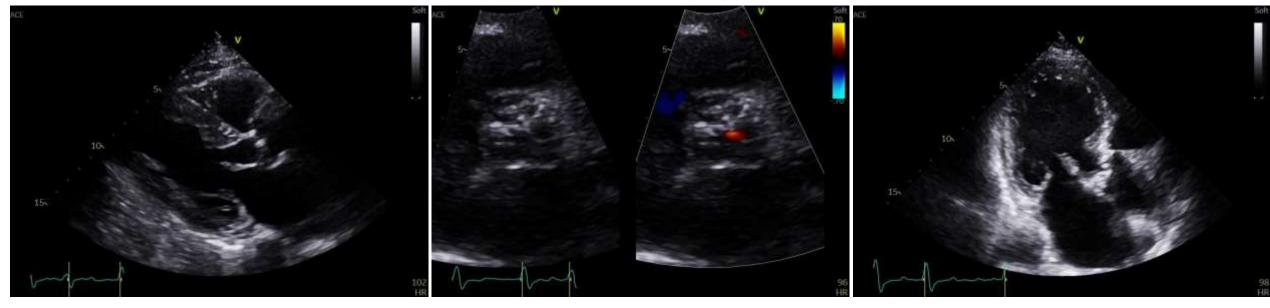

- The "pressure drop" is related to AR
- The diastolic hemodynamics is associated with HR, atrial function, rhythmic problems, myocardial stiffness, mitral valvular status, which influence the interval of diastole.

Balance between simple and inaccessible


- The Dicrotic AR index
 - [(AoSBP) (LVEDP)] / [(dicrotic notch pressure) (AoDBP)] * 100

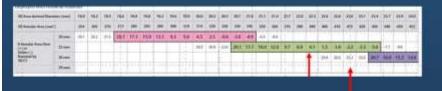
Dicrotic AR index


- [(AoSBP) (LVEDP)] / [(dicrotic notch pressure) (AoDBP)] * 100
 - AR index
 - AUC 0.444 (0.340-0.547), p=0.303
 - Dicrotic AR index
 - AUC 0.795 (0.706-0.885), p<0.001



Best cutoff value

Example Case


- 79/F
 # Severe AS
 # DM(Dx'ed '02) / HTN
 # CHF d/t IHD (NYHA Fc III)
- # AF on apixaban ('20.2~)

Example Case

TAVI Case preview Measurement of dimensions (Edwards)

Annulus area = 415 mm²
Area driven diameter = 23.0 mm

⇒ Sapien-3 26mm

Nominal: 24.8% -2.0cc : 14.2% -2.5cc : 11.5%

Seoul National University Hospital Cardiovascular Center

TAVI Case preview Measurement of dimensions (Medtronic)

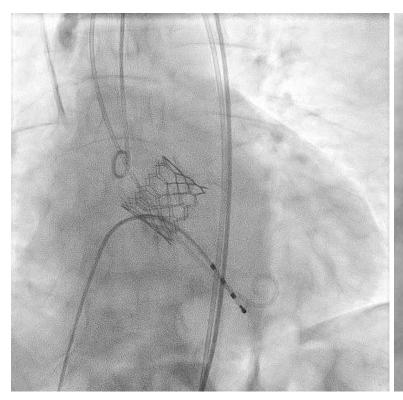
Diameter (mm)	23	23.5	24	24.5	26	25.5	26	26.5	27	27.5	-28	28.5	29	29.5	-30
Perimeter	72.2	73.8	75.4	76.9	78.5	80.1	81.6	83.2	84.8	86.4	87.9	89.5	91,1	33.6	94.2
EvR/Pro 23															
EvR/Pvo 28	13.0%	10.6%	B.3%												
EvR/Pro 29	26.1%	23.4%	20.0%	0.4%	16:0%	13.7%	11.5%	9.4%	7.4%						
EVR 34							30.0%	28.3%	25.9%	23.6%	21.5%	19.3%	17.2%	15.3%	13.3%

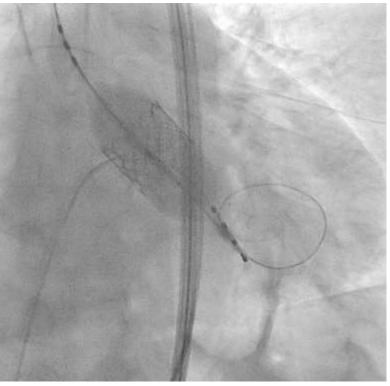
Annulus perimeter = 74.9mm Annulus diameter = 23.9mm

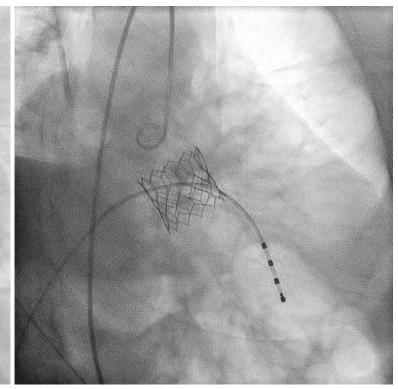
21.3% oversizing (annulus perimeter 기준)

Seoul National University Hospital Cardiovascular Center

TAVI Case preview Measurement of dimensions (boston)


이월순	Patient	Lotus 25mm size	Difference	Oversize %
Area derived (mm)	23.1	25	-1.9	8.2%
Perimeter derived (mm)	23.9	25	-1,1	4.6%


Annulus area = 420.8 mm²
Area driven diameter = 23.9mm


→ Lotus Edge 25mm

Seoul National University Hospital Cardiovascular Cente

Example Case

	Initial
AR index	29.0
Dicrotic AR index	2.6

🛶 Sapien	-3	26mm	
Nomina -2.0cc -2.5cc		14.2%	

	Initial
AR index	27.3
Dicrotic AR index	3.7

Conclusion

✓ TAVI is expanding...

- ✓ Now we need fine tuning to accelerate and reinforce TAVI as a standard
 - ✓ Not more an alternative of SAVR.
 - ✓ More delicate pre-evaluation, More standardization, More optimization needed.

- ✓ We suggest 2 new in indexes that can be used for optimization
 - ✓ Oversizing index: to select the adequate valve and inflation method
 - ✓ Dicrotic AR index: to evaluate AR and guide adjunctive therapy