AP VALVES & STRUCTURAL HEART 2022

새로 시작하는 센터를 위한 AMC 타비 가이드 타비 전후 심초음파, 무엇을 봐야하나요?

Seung-Ah Lee, MD, PhD
Heart institute, Asan Medical Center
Korea

Disclosure

I have no financial relationships to disclose

Contents

- Preprocedural planning: Role of stress echocardiography and TEE
- Intra-TAVR monitoring: Transthoracic or Transesophageal?
- Post-TAVR: assessment of valve function

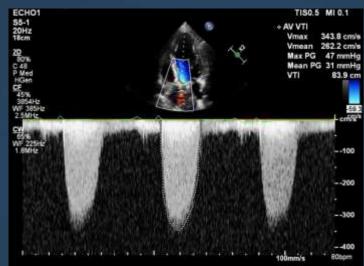
Contents

- Preprocedural planning: Role of stress echocardiography and TEE
- Intra-TAVR monitoring: Transthoracic or Transesophageal?
- Post-TAVR: assessment of valve function

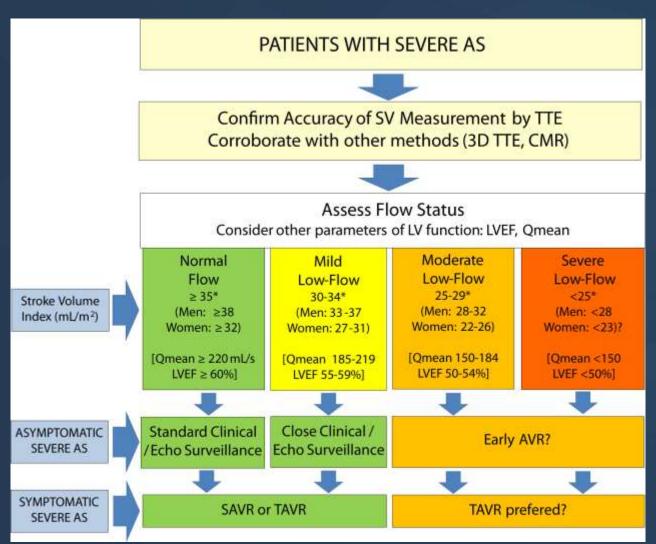
Candidates for TAVR

2020 ACC/AHA Guideline for the Management of Valvular Heart Disease

Stage	Definition	Valve Anatomy	Valve Hemodynamics	Hemodynamic Consequences	Symptoms					
C: Asympton	C: Asymptomatic severe AS									
C2	Asymptomatic severe AS with LV systolic dysfunction Severe leaflet calcification/ fibrosis or congenital stenosis with severely reduced leaflet opening		Aortic V _{msc} ≥4 m/s or mean ΔP ≥40 mm Hg AVA typically ≤1.0 cm² (or AVAi 0.6 cm²/m²) but not required to define severe AS	LVEF <50%	None					
D: Symptom	D: Symptomatic severe AS									
D1	Symptomatic severe high-gradient AS	Severe leaflet calcification/ fibrosis or congenital stenosis with severely reduced leaflet opening	Aortic V _{max} ≥4 m/s or mean ΔP ≥40 mm Hg AVA typically ≤1.0 cm² (or AVAi ≤0.6 cm²/m²) but may be larger with mixed AS/AR	LV diastolic dysfunction LV hypertrophy Pulmonary hypertension may be present	Exertional dyspnea, decreased exercise tolerance, or HF Exertional angina Exertional syncope or presyncope					
D2	Symptomatic severe low-flow, low-gradient AS with reduced LVEF	Severe leaflet calcification/ fibrosis with severely reduced leaflet motion	AVA ≤1.0 cm² with resting aortic V _{max} <4 m/s or mean ΔP <40 mm Hg Dobutamine stress echocardiography shows AVA <1.0 cm² with V _{max} ≥4 m/s at any flow rate	LV diastolic dysfunction LV hypertrophy LVEF <50%	HF Angina Syncope or presyncope					
D3	Symptomatic severe low-gradient AS with normal LVEF or paradoxical low-flow severe AS	Severe leaflet calcification/ fibrosis with severely reduced leaflet motion	AVA ≤1.0 cm² (indexed AVA ≤0.6 cm²/m²) with an aortic V _{max} <4 m/s or mean ΔP <40 mm Hg AND Stroke volume index <35 mL/m² Measured when patient is normotensive (systolic blood pressure <140 mm Hg)	Increased LV relative wall thickness Small LV chamber with low stroke volume Restrictive diastolic filling LVEF ≥50%	HF Angina Syncope or presyncope					


- High-gradient AS
 - Symptom? C1 vs. D1
 - LVEF<50%? C2
- Low-gradient AS
 - Definition: AVA<1.0cm² And V max
 <4.0m/s or PG <40mmHg
 - LVEF <50%? Low-flow (D2)
 - SVI <35 mL/m²? Paradoxical low-flow (D3)

LFLG severe AS

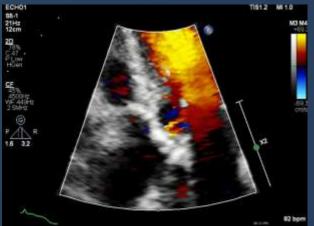

Resting

10mcg/kg/min

	BP	PR	AV Vmax	AV TVI	LVOT TVI	AVA	ESV	EDV	EF	Sp0 ₂
Basal	129/75	82	3.4	83.9	13.8	0.6	106	139	23%	96%
2.5 mcg	88/40	78	3.6	84.9	14.5	0.58	106	135	22%	96%
5 mcg	95/44	76	3.7	87.2	15.3	0.56	105	134	22%	97%
7.5 mcg	100/55	84	3.9	93.8	15.7	0.54	87.6	124	29%	98%
10 mcg	107/54	80	4.2	87.5	14.4	0.53	92.5	130	29%	98%
Recovery	109/56	80	3.5	75.8	15.8	0.67	110	165	33%	98%

Dobutamine infusion을 10 mg/kg/min까지 시행함. Aortic valve는 4.2 m/sec까지 증가하였으며, AVA는 0.5~0.6 cm²으로 유지되어 truly stenotic severe AS에 합당함.

Paradoxical LFLG severe AS



By biplane method

LVEDD/ESD 31/17mm

LVEDV/ESV 40/15 cc

SVI = 19.8 cc/m²

By continuity equation

LVOT diameter 18 mm LVOT TVI 24.6cm²

 $SVI = 49.2 \text{ cc/m}^2$

Exercise echo (for symptom), CT calcium score

TEE for sizing of TAVR valve

Contents

- Preprocedural planning: Role of stress echocardiography and TEE
- Intra-TAVR monitoring: Transthoracic or Transesophageal?
- Post-TAVR: assessment of valve function

AMC TAVR volume

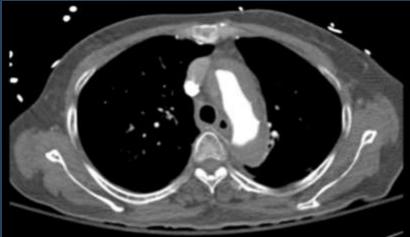
Minimalist approach

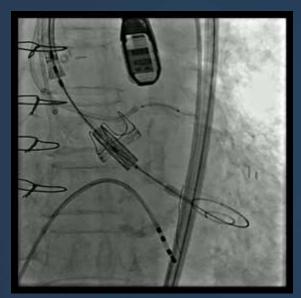
When the TEE is needed?

- Initial learning period
- Trans-apical approach
- Emergent or urgent TAVR
- Valve-in-valve procedure

- Pericardial effusion cardiac tamponade
 - Aortic root injury
 - RV rupture due to pacing lead
- RWMA due to coronary obstruction during ViV procedure
- LVOT or leaflet calcium fracture

Aortic root injury

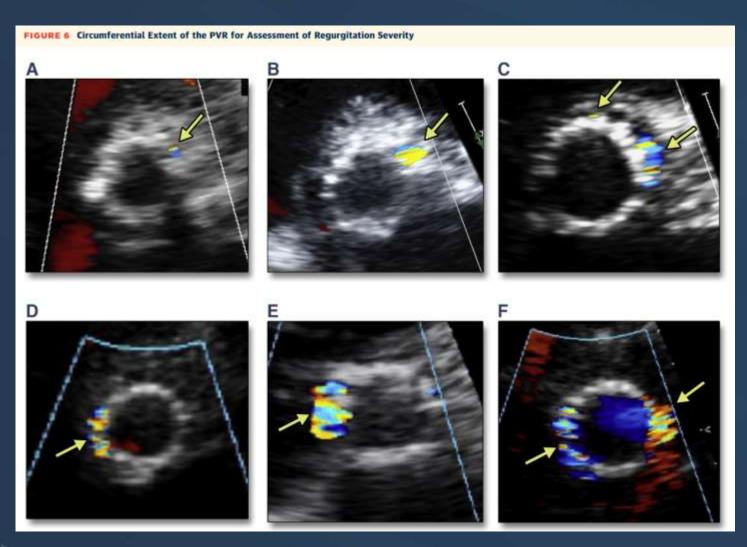


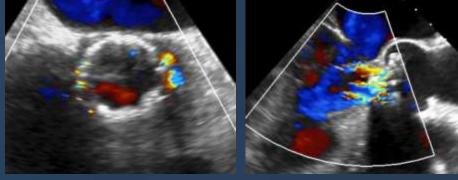




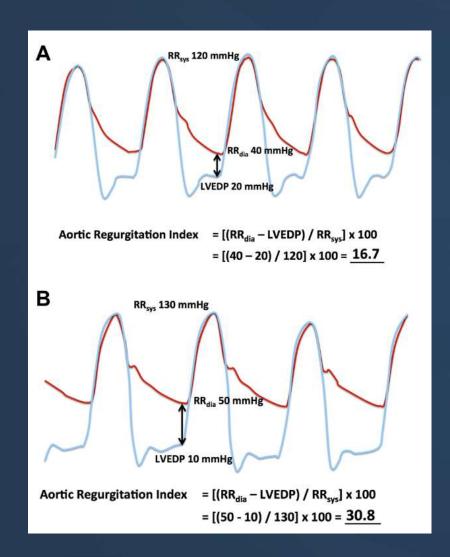
Coronary Obstruction during ViV procedure

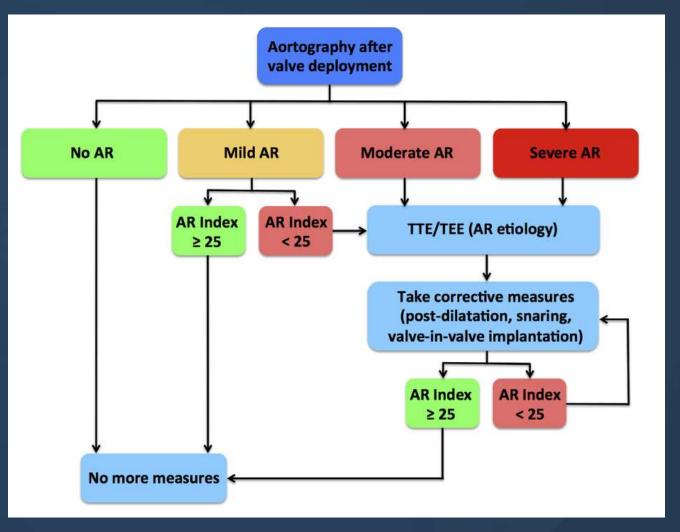
Leaflet Calcium Fracture





Severity of PVL after TAVR



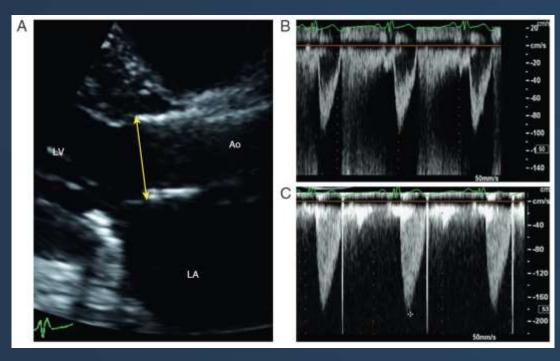

Circumferential extent

- Trace <5%
- Mild 5-15%
- Mild to moderate 15-25%
- Moderate 15-25% + large VC
- Moderate to severe >30%

J Am Coll Cardiol Img 2015;8:340-60

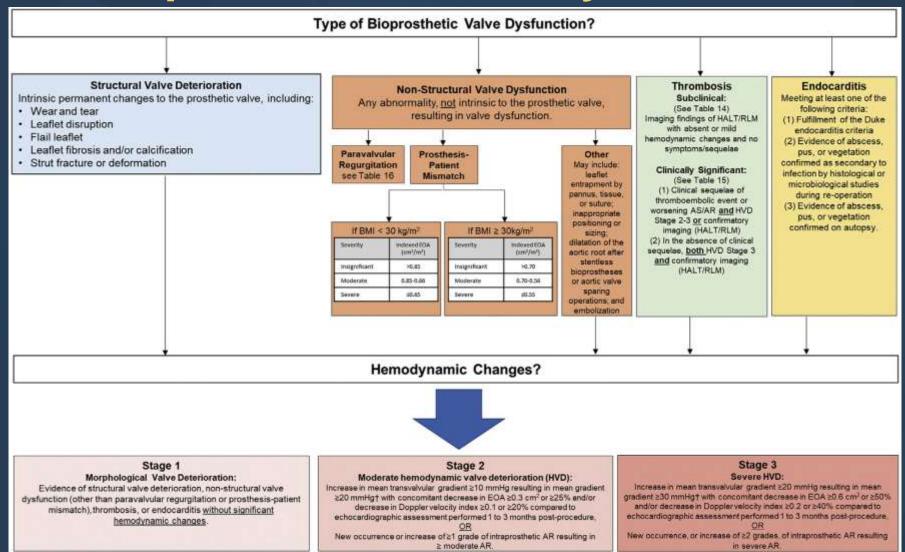
AR index and Treatment Algorithm

Complications of TAVR


	Transesophageal Echo Assessment				
Hemodynamic instability					
Severe transvalvular or paravalvular aortic regurgitation	 Assess location of regurgitation (central vs. paravalvular). Assess position of the transcatheter valve. Assess severity of aortic regurgitation. 				
Severe mitral regurgitation	 Evaluate severity of mitral regurgitation and anatomy of the mitral apparatus valvular perforation, rupture chordae, tethering of the leaflets. 				
Pericardial effusion	 Assess for tamponade physiology and possible etiology (i.e., chamber perforation, aortic dissection). 				
Ventricular dysfunction	 Evaluate for regional or global wall motion abnormalities of the LV or RV. Identify the coronary ostium; use color flow Doppler to assess blood flow. 				
Aortic rupture or dissection	 Examine the aortic root/ascending aorta for periaortic hematoma, aortic dissection, or rupture. Assess for pericardial effusion/tamponade. 				
Major bleeding	 Assess ventricular size and function (wall collapse due to hypovolemia). 				
Other procedural complications					
Balloon aortic valvuloplasty complication	 Assess severity of aortic regurgitation. Examine the aortic root/ascending aorta for periaortic hematoma, aortic dissection, or rupture. Identify the left main ostium; use color flow Doppler to assess blood flow. 				
Mal-positioning of the transcatheter heart valve	 Too high or too low within the annulus with resulting hemodynamic instability: rapid deployment of a second valve can be performed. Embolization of the valve (into the LV or into the aorta) may require surgical intervention. 				
Fistula	 Ventricular septal defect. Aortocameral fistula (typically into the RVOT or right atrium). 				

Contents

- Preprocedural planning: Role of stress echocardiography and TEE
- Intra-TAVR monitoring: Transthoracic or Transesophageal?
- Post-TAVR: assessment of valve function


Expected EOA

	Prosthetic Valve Size, mm								
Valve Iteration	20	23	26	29	All Sizes	p Value			
SAPIEN									
EOA, cm ²	NA	1.56 ± 0.43 (1,212)	1.84 ± 0.52 (1,130)	NA	1.70 ± 0.49 (2,342)	< 0.001			
Mean gradient, mm Hg	NA	9.92 ± 4.27 (1,212)	8.76 ± 3.89 (1,130)	NA	9.36 ± 4.13 (2,342)	< 0.001			
DVI	NA	0.53 ± 0.13 (1,212)	0.53 ± 0.13 (1,130)	NA	0.53 ± 0.13 (2,342)	0.64			
SAPIEN XT									
EOA, cm ²	NA	1.41 ± 0.30 (545)	1.74 ± 0.42 (675)	2.06 ± 0.52 (251)	1.67 ± 0.46 (1471)	< 0.001			
Mean gradient, mm Hg	NA	10.41 ± 3.74 (545)	9.24 ± 3.57 (675)	8.36 ± 3.14 (251)	9.52 ± 3.64 (1,471)	< 0.001			
DVI	NA	0.52 ± 0.10 (545)	0.54 ± 0.11 (675)	0.53 ± 0.11 (251)	0.53 ± 0.11 (1,471)	0.004			
SAPIEN 3									
EOA, cm ²	1.22 ± 0.22 (47)	1.45 ± 0.26 (471)	1.74 ± 0.35 (626)	1.89 ± 0.37 (326)	1.66 ± 0.38 (1,470)	< 0.001			
Mean gradient, mm Hg	16.23 ± 5.01 (47)	12.79 ± 4.65 (471)	10.59 ± 3.88 (626)	9.28 ± 3.16 (326)	11.18 ± 4.35 (1,470)	< 0.001			
DVI	0.42 ± 0.07 (47)	0.43 ± 0.08 (471)	0.43 ± 0.09 (626)	0.40 ± 0.09 (326)	0.43 ± 0.09 (1,470)	< 0.001			
CoreValve									
EOA, cm ²	1.12 ± 0.36 (19)	1.74 ± 0.49 (289)	1.97 ± 0.53 (446)	2.15 ± 0.72 (81)	1.88 ± 0.56 (835)	< 0.001			
Mean gradient, mm Hg	14.43 ± 5.72 (22)	8.27 ± 3.82 (307)	8.85 ± 4.17 (478)	9.55 ± 3.44 (83)	8.85 ± 4.14 (890)	< 0.001			
DVI	0.44 ± 0.09 (20)	0.59 ± 0.15 (300)	0.54 ± 0.12 (463)	0.49 ± 0.12 (83)	0.55 ± 0.13 (866)	< 0.001			
Evolut R									
EOA, cm ²	1.09 ± 0.26 (3)	1.69 ± 0.40 (71)	1.97 ± 0.54 (129)	2.60 ± 0.75 (52)	2.01 ± 0.65 (255)	< 0.001			
Mean gradient, mm Hg	14.97 ± 7.15 (3)	7.53 ± 2.65 (77)	7.85 ± 3.08 (141)	6.30 ± 3.23 (57)	7.52 ± 3.19 (278)	< 0.001			
DVI	0.42 ± 0.04 (3)	0.61 ± 0.13 (75)	0.59 ± 0.14 (135)	0.58 ± 0.15 (55)	0.59 ± 0.14 (268)	0.09			

J Am Coll Cardiol Img 2019;12:25–34

Bioprosthetic Valve Dysfunction

Conclusion

- TTE and TEE play a critical role in the diagnosis of aortic valve stenosis
 - Dobutamine stress echo and Exercise echo

 When a patient becomes hemodynamically unstable, TTE or TEE can be an essential diagnostic tool, and we can get clues from it

Regular TTE follow-up after TAVR is required

