

AP VALVES & STRUCTURAL HEART 2022

Real world experience with the ACURATE neo2

W. Kim, MD

TUKGM®

UNIVERSITÄTSKLINIKUM Giessen und Marburg Kerckhoff Heart Center, Bad Nauheim, Germany

Justus-Liebig University Giessen/Marburg, Germany

KERCKHOFF KLINIK

AP VALVES & EDEE STRUCTURAL HEART

Disclosure

Proctor/speaker fees/advisory board

- Abbott
- Astra Zeneca
- Boston Scientific
- Daiichi
- Edwards Lifesciences
- Medtronic
- Meril Life Sciences
- Shockwave Medical

- Sizing
- Positioning
- Commissural alignment
- Recrossing
- Management of valve dislodgement

Limitations & caveats of first gen ACURATE neo

Aortic valve calcification

23

24

25

26

27

29

Annulus range

19

20

21

Appropriate Sizing

ACURATE neo Size	Annular Range According to Official Sizing Recommendation (mm)	Perimeter-Derived Annulus in Diastole (mm) (Oversizing)	Perimeter-Derived Annulus in Systole (mm) (Oversizing)	
Small	21.0-23.0	20.0-22.0 (13.0%-4.4%)	20.0-22.4 (13.0%-2.6%)	
Medium	23.0-25.0	22.1-23.9 (11.6%-4.4%)	22.5-24.3 (10.0%-2.8%)	
Large	25.0-27.0	24.0-25.8 (11.1%-4.4%)	24.4-26.3 (9.6%-2.6%)	

22

Correct positioning

AP VALVES & EDEEL STRUCTURAL HEART

Learning curve first gen ACURATE neo

Variable	Quartile 1 (Case 1–250)	Quartile 2 (Case 251–500)	Quartile 3 (Case 501–750)	Quartile 4 (Case 751-1000)	р
Cover index (%)	3.87 [1.86; 6.37]	5.13 [3.04; 7.30]	5.38 [3.39; 7.52]	6.17 [4.20; 7.90]	<0.001
Aortic valve calcium score (AU)	2395 [1646; 3111]	2049 [1494; 2872]	1955 [1385; 2893]	1989 [1280; 2726]	<0.001
Eccentric calcification	64 (25.6%)	41 (16.4%)	42 (16.8%)	29 (11.6%)	0.001
Implantation depth LCC (mm)	5.0 [3.0; 6.0]	6.0 [5.0; 7.0]	6.0 [4.0; 6.0]	5.0 [4.0; 6.0]	<0.001
Device success (VARC-2)	171 (85.5%)	177 (88.5%)	181 (90.5%)	186 (93.0%)	0.002
PVL ≥moderate	18/243 (7.4%)	7/241 (2.9%)	9/246 (3.7%)	2/246 (0.8%)	0.001
Permanent pacemaker	25 (10.0%)	26 (10.4%)	26 (10.4%)	17 (6.8%)	0.444

STRUCTURAL HEARI

ČVRF

Proper sizing is key!

- Wrong measurement
- Measurement in wrong phase
- Suboptimal size selection

Common annulus measurement errors

Too many dodds

Perimeter 75 mm

Exclusion of calcium

Perimeter 72 mm

Perimeter 71 mm

Perimeter 68 mm

AP VALVES & ECER

Cyclic changes of annulus

Sizing difference systole vs. diastole

- Systole:	22.9 mn	n => size M
------------	---------	-------------

- Diastole: 22.0 mm => size S

tys			das		
Detante	A dem	Phase 200	Outance	nc Good Nr.	Phase - Clurk
to Type	Label	Value	to Type	Labort	Value
t Halpyr	millin @	21,8 mm	t Halpips	n Min. @	19,2 mm
	Max IB	23,4 mm		Max. 8	26,7 mm
	Aug 0	24.5 mm		Aug D	23,0 mm
	Alrea derived @	34.2 000		Avea merived @	23/3 mm
	Partmeter derived ill	24.7 mm		Partmater detrad &	25.8 mm
	Ansa	498.9 mm		Avea	418,5 mm
	Parimeter	77.8 mm.		Patroneter	74.9 mm

- Systole: 24.7 mm => size L
- Diastole: 23.8 mm => size M

Sizing considerations Neo vs Neo2

Data under review

The role of the STJ for anchoring

AP VALVES & EDEEL STRUCTURAL HEART

Suggestion for sizing algorithm: ACURATE neo2

*Upsize if:

- STJ or STJ height is large
- Only diastolic reconstruction is available
- Perimeter could be underestimated (measured with few dodds)
- Eccentric annulus?
- Eccentric calcification
- High body size?

How to position the AS neo 2?

Positioning Upper Crown on top of native leaflets

Anatomic limitations of positioning

AP VALVES & ECERT

Kim et al, ICJ 2022

Commissural Alignment

X Commissural misalignment

Commissural alignment

Sondergaard et al. EuroIntervention. 2018; 14:147-9

The main goal is not perfect commissural alignment, but to avoid commissural misalignment!

AP VALVES & 2022 STRUCTURAL HEART

Rationale, Definitions, Techniques, and Outcomes of Commissural Alignment in TAVR

From the ALIGN-TAVR Consortium

Gilbert H.L. Tang, MD, MSc, MBA,^a Ignacio J. Amat-Santos, MD, PHD,^b Ole De Backer, MD, PHD, MBA,^c Marisa Avvedimento, MD,^d Alfredo Redondo, MD,^{b,e} Marco Barbanti, MD,^f Giuliano Costa, MD,^f Didier Tchétché, MD,^g Hélène Eltchaninoff, MD,^h Won-Keun Kim, MD,ⁱ Syed Zaid, MD,^j Giuseppe Tarantini, MD, PHD,^k Lars Søndergaard, MD^c

ABSTRACT

Given the expanding indications of transcatheter aortic valve replacement (TAVR) in younger patients with longer life expectancies, the ability to perform postprocedural coronary access represents a priority in their lifetime management. A growing body of evidence suggests that commissural (and perhaps coronary) alignment in TAVR impacts coronary access and valve hemodynamics as well as coronary flow and access after redo-TAVR. Recent studies have provided modified delivery system insertion and rotation techniques to obtain commissural alignment with available transcatheter heart valve devices. Moreover, patient-specific preprocedural planning and postprocedural imaging tools have been developed to facilitate and evaluate commissural alignment. Future efforts should aim to refine transcatheter heart valve and de-livery system designs to make neocommissural alignment easier and more reproducible. The aim of this review is to present an in-depth insight of commissural alignment in TAVR, including its rationale, standardized definitions, technical steps, outcomes, and future directions. (J Am Coll Cardiol Intv 2022;15:1497-1518) © 2022 by the American College of Cardiology Foundation.

AP VALVES & 2022 STRUCTURAL HEART

VinV (off-label) with commissural alignment

AP VALVES & ELEE STRUCTURAL HEAR

No commissural alignment

Two posts on inner curve, one post on outer curve => Rotate counterclockwis e

AP VALVES & 2022 STRUCTURAL HEART

Commissural alignment

After turning 30° counterclockwis e, all three posts are aligned.

AP VALVES & EDEEL STRUCTURAL HEART

Implantation

AP VALVES & ECERT

Final aortogram

AP VALVES & ECERCIA STRUCTURAL HEART

Recrossing: what we want to avoid

Wire thru valve body but outside upper arch

AP VALVES & 2022 STRUCTURAL HEART

Recrossing techniqu

If possible, use pigtail only

AP VALVES & EDER STRUCTURAL HEART Some anatomies will require additional use of pigtail and wire

Incorrect Rerossing Wire does not move freely from inner/outer curvature at commissure post level

STRUCTURAL HEART

Correct Recrossing Wire moves freely from inner/outer curvature at commissure post level

Pull and push on the wire trying to visualize if it travels beyond the overlapped post to the inner and outer side

STRUCTURAL HEART

Wrong and correct recrossing

AP VALVES & ECERI STRUCTURAL HEART

Recrossing wrap up

AP VALVES & EXCEPT STRUCTURAL HEART

Freely crosses posts overlap

Cannot cross inside posts

Cannot cross outside posts

Valve embolization

Bailout options:

- 1) Conversion to open heart surgery
- 2) Valve-in-valve
- Sapien 3 ultra
- ACURATE neo2
- Evolut R/Navitor
- 3) Stent-in-valve

AP VALVES & 2022 STRUCTURAL HEART

AP VALVES & POPPI STRUCTURAL HEART

AP VALVES & ECERET STRUCTURAL HEART

VinV and pigtail repositioning technique

AP VALVES & ECERI STRUCTURAL HEART

Full deployment and DS retrieval

AP VALVES & 2022 STRUCTURAL HEART

Final angio

AP VALVES & ECERT

STRUCTURAL HEART

Conclusion

- Careful sizing and correct positioning are key for procedural success
- Commissural alignment can be easily achieved
- In the event of recrossing the ACURATE valve, the correct position should be verified
- Valve dislodgement requires a distinguished approach

