

How to treat Heavily Calcified lesions PCI

Antonio Colombo

EMO-GVM, Centro Cuore Columbus, Milan, Humanitas, Research Hospital, Rozzano, Milam

No conflicts to disclose

In AVIO Trial (IVUS guided PCI, AHJ, 2013, A. Chieffo) the Investigators where not able to achieve optimal stent expansion in about 40% of the lesions

> The technologies to treat calcified and fibrotic lesions were not present or not fully utilized

Approach to calcified lesions

- High pressure balloon
- Rotablator/Orbital Atherectomy
- Angiosculpt/Cutting balloon inflated at 20 atm
- Shockwave balloon

Laser

Post-NC3.0mm20atm

Not always effective

OPN NC® Super High Pressure PTCA Balloons Highest rated burst pressure of 35 bar

Post-OPN 3.5mm40atm

Rotablation and NC Balloon Cutting Balloon when needed

Rotablator: 1.75 mm 180,000 rpm

Rota burr (1.75 mm) successfully crossed the lesion. Pre-dilatation: 3.0 mm (NC), 24atm

Subsequent pre-dilatation with 3.0 mm NC balloon at high pressure (24atm)

→ The lesion could not be expanded sufficiently.

IVUS findings after rotational atherectomy

✓ Circumferential calcification
 ✓ MLA
 2.51 mm² (1.71/1.88 mm)

 ✓ Circumferential calcification
 ✓ Evidence of debulking by rotational atherectomy

Previous stent
Lumen area
4.64 mm² (2.43/2.58 mm)

Additional lesion preparation: cutting balloon

Considering severely calcified lesions, pre-dilatation with cutting balloon at high pressure was additionally attempted.

➡ The lesion could be expanded.

IVUS findings after cutting and NC balloons

Cracks on the calcification

Before cutting balloon

After cutting balloon (+ 3.0 mm NC balloon)

B'

Final angiography: Excellent angiographic results

Shockwave Balloon

Case 1. diffuse mid LAD lesion

Baseline OCT pullback:
 Diffusely and severely calcified lesion

Case 1. diffuse mid LAD lesion

Diffusely and severely calcified LAD

Large arc (>180 degrees) Thick calcification

Lesion preparation with shock wave

Lesion preparation with shock wave

Balloon inflation: 4atm (10 sec shock wave) → 6atm → deflation (Maximum: 8 sessions/ catheter)

1st -3rd session: the lesion was undilated

4th session: the lesion was dilated

OCT findings after shock wave

Lesions were expanded;

No obvious cracks of calcificationDissection around calcifications

Additional predilatations after shock wave

After shock wave → Additional predilatations

Additional predilatation 3.5 mm (NC): 24atm

Multiple additional predilatations for the lesions underwent shock wave

 \Rightarrow Appropriate lesion expansion

Because of the difficulty to deliver relatively long stent, GuideLiner support was required.

➡ Post-dilatation: 3.5 mm (NC): 18-24atm

DES implantation after appropriate lesion preparation

DES implantation after appropriate lesion preparation **HUMANITAS**

Excellent angiographic results

Baseline

75/2019

75/2019

Femoral access 7 F, elective IABP

Baseline

3.75 mm Shockwave balloon 8 runs in total

Shockwave LM

Shockwave LAD

Shockwave LCx

Final Result

75/2019

Final Result

DISRUPT CAD III 1 yr. outcome in 384 pts

MACE 13.8%

Cardiac Death 1.1%

MI 10.5% (3.2% after 30 days)

Stent Thrombosis 1.1%

Ischemia driven TLR 6%

Shockwave may not work in Focal Calcium

Excimer Laser 0.9 mm

80 mJ/80 Hz

Optimal lesion preparation

Rotablator

- Orbital Atherectomy (CSI)
- Cutting or Angiosculpt at very high pressure (IVUS important for sizing
- OPN very high pressure dedicated balloon (over 40 atm.)
- Shockwave balloon (lithoplasty)
- Laser-ELCA; contrast injection only for underexpanded stent

One approach may not be sufficient and be liberal to use more than one