"HANGING BY A THREAD" A Challenging Case of Acute Coronary Syndrome Caused by Critically Stenosed **Distal Left Main and Critically Stenosis Right Coronary Artery Due to Eruptive** Calcified Nodules in an Octogenerian Patient

Dr Lee Tjen Jhung, MD, MRCP (UK), EAPCI(EU), SCCT (US), BSCCT (UK), CCDS (IBHRE) National Heart Institute, Malaysia

Disclosure

• Travel grant from Abbott

Case background

- 88 year old fit man
- HTN
- Presents with typical crushing chest pain with radiation to the jaw
- ECG shows minimal ST segment depressions in the inferior leads
- ECHO (EF60%)

RCA – heavily calcified with nodule at the centre causing severe stenosis

dLMS – critical stenosis caused by calcified stenosis? Calcific nodule

LAD severe stenosis mid LAD calcified, with aneurysmal sac!

Strategy??

- CABG patient refused
- PCI: ?
- Syntax score : 50
- Right or left system first?
- Strategy : All guns blazing!
- High risk consent

MACCE by SYNTAX Score 33+

The cumulative MACCE rate is displayed for the SYNTAX Trial group this score corresponds to.

SYNTAX Score I

Lesion 1	
(segment 1): 1x2=	2
(segment 2): 1x2=	2
(segment 3): 1x2=	2
(segment 5): 5x2=	10
(segment 6): 3.5x2=	7
(segment 7): 2.5x2=	5
(segment 9): 1x2=	2
(segment 10): 0.5x2=	1
(segment 11): 1.5x2=	3
(segment 12a): 1x2=	2
(segment 13): 0.5x2=	1
(segment 14): 0.5x2=	1
Trifurcation 3 diseased segment(s) involved	5
Length >20 mm	1
Heavy calcification	2
Sub total lesion 1	46
Diffuse disease/Small vessels	
Segment 2	1
Segment 7	1
Segment 11	1
Segment 12a	1
Sub total diffuse disease/small vessels	4
TOTAL:	50

PCI to RCA

RCA – heavily calcified with nodule at the centre causing severe stenosis

Rotablation 1.5mm burr, 7 runs

Final results (x2 DES)

PCI to LMS (with rotablation and OCT)

- Strategy:
- 7Fr EBU guide
- Artherectomy is quite likely mandatory
- OCT as mode of intracoronary imaging
- Can the OCT catheter pass? Get stuck? Flow obstruction during OCT can be catastrophic
- Balloon first: 2.0NC to create a channel, and "palpate" the vessel

LMS – severe distal LM calcification

LAD – severe mid LAD stenosis with two Diagonal CTOs, and aneurysmal segment distal LAD

Spider view - overlap

21 2022 Полимате т

Analysis of angiogram

Wired with RTF

RTF got stuck/lodged in calcium crevice? See how the guide dives in when I retract the wire

Ballooned proximal LMS calcium lesion 2.0NC

CURF

COMPLEX PCI 2022

Analysis of the OCT run

Pre-PCI OCT | Strategize

MORPHOLOGY

LENGTH

If High Calcium¹

>180 degrees, and >0.5 mm thickness, and >5 mm in length

Common Practice:²

NC Balloon, IVL, Cutting/Scoring Balloon, or Atherectomy

Select Landing Zones³

Visually scan for largest luminal area

Place landing zones in healthy tissue (i.e. EEL visualization)

Note: In the absence of EEL to represent healthy tissue find the largest lumen to avoid areas of TCFA or lipid pools so as to not land your stent edge in these high risk areas⁴

Adjust to stent length

DIAMETER

Measure Vessel Diameter⁵

Take EEL measurements at each reference (lumen if EEL not visible)

Choose Stent Diameter⁵

Use the distal reference measurement to select stent diameter EEL: round down to nearest stent size. Lumen: round up

Choose Post Dilation Balloon Diameter⁵

Distal Balloon: Use distal reference measurement Proximal Balloon: Use proximal reference measurement

Analysis of the OCT run : M

COMPLEX PCI 2022

Analysis of the OCT run : L, D

COMPLEX PCI 2022

Proceed with rotational arterectomy

Rotablation 1.5 burr 180000rpm

Rotablation 1.5 burr 180000rpm Deceleration to 160000rpm!

Modification of wire bias to achieve better rotablation by guide manipulation

We also reduced the burr speed to 160000rpm to increase circumferential burr movement slightly

Repeat OCT after artherectomy

COMPLEX PCI 2022

Distal calcium modification

Proximal LAD ostium and LMS calcium modification

Proceed with scoring balloon angioplasty

2.5x15 scoring balloon at 20atm

3.0x15 scoring balloon at 20atm

COMPLEX PCI 2022

DES implantation

Repeat OCT after Stenting and optimization

Post PCI assessment by OCT

Post-PCI OCT | Optimize

MEDIAL DISSECTION

Address Significant Dissection⁴

Dissection penetrates medial layer, and is greater than 1 quadrant arc

Common Practice:^{4,5}

Place additional stent (particularly for distal dissections)

APPOSITION

Address Gross Malapposition

Longer than 3 mm,⁵ and ≥ 0.3 mm from wall⁶

Common Practice:⁴

Dilate with semi-compliant balloon at low pressure

XPANSION

Confirm Expansion^{4,7}

≥80% acceptable (≥90% optimal)

Common Practice:⁸

If not achieved, post-dilate with noncompliant balloon

M : Medial dissection

Distal stent edge, no dissection

Proximal stent edge, cannot assess as too proximal (left main ostium) and unable to engage guide properly but at the same time visualize the proximal stent edge

Final results

Discussion Points

- Would the cardiothoracic surgeon and anaesthetist take this 88 year old fit patient for urgent CABG in your centre?
- Would anyone have performed PCI to left system first rather than the RCA
- Do you routinely use backup transvenous pacing when performing artherectomy to RCA?
- For the LMS-LAD lesion, would you have considered other modalities of calcium modification eg OAS/ Laser/ IVL?
- Would anyone have upsized the Rota burr to 1.75 or even 2.0mm?
- Any other tips and tricks to optimize rotablation efficacy in calcified nodules/ eccentrically calcified lesion
- Would anyone have used IABP for this case prophylactically despite a good LVEF 60%

Conclusion

- Patient recovered well post angioplasty and was discharged home the next day. He is well at 1 months clinic follow up with NYHA class 1 and no chest pain, and has returned to his usual routine of cycling.
- In conclusion, high-risk complex angioplasty can be successfully performed with low rates of complications when done with proper planning and in stages. This case illustrates how different intracoronary imaging modalities (OCT) have been instrumental in choosing the right calcium debulking methods, ensuring good stent expansion and reducing the risk of stent failure. In summary, intracoronary imaging should be mandated in cases with heavily calcified plaque.

