

Edwards Is Enough!

Gerald Yong MBBS (Hons) FRACP FSCAI Interventional Cardiologist Royal Perth Hospital Western Australia

Meeting Name

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial Interest /arrangement or affiliation with the organization(s) listed below

Affiliation/Financial Relationship Grant/ Research Support:

Consulting Fees/Honoraria:

Major Stock Shareholder/Equity Interest:

Royalty Income:

Ownership/Founder:

Salary:

Intellectual Property Rights:

Other Financial Benefit:

<u>Company</u> Medtronic Inc

Edwards Lifesciences (consultant & proctor) My title is "Edwards is enough!!"

• Or is it "Edwars is better than CoreValve"...?

What is "enough"??

- True percutaneous insertion
- No need for general anesthesia
- Multiple valve sizes
- An easy sizing tool for annular size
- Smallest size possible <16 Fr</p>
- Smooth outer surface to pass through aorta
- Easy transition over arch
- Easy transit through valve
- "Self seating"
- Adequate radial strength
- Repositionable if needed
- Retrievable if needed
- No valve gradient
- Conforms to annulus without AR
- Long term durability

True percutaneous insertion

- No need for general anesthesia
- Multiple valve sizes
- An easy sizing tool for annular size
- Smallest size possible <16 Fr</p>
- Smooth outer surface to pass through aorta
- Easy transition over arch
- Easy transit through valve
- "Self seating"
- Adequate radial strength
- Repositionable if needed
- Retrievable if needed
- No valve gradient
- Conforms to annulus without AR
- Long term durability

Percutaneous Aortic Valve Replacement

Vascular Outcomes With a Fully Percutaneous Procedure

Stefan Toggweiler, MD,* Ronen Gurvitch, MBBS,* Jonathon Leipsic, MD,† David A. Wood, MD,* Alexander B. Willson, MBBS,* Ronald K. Binder, MD,* Anson Cheung, MD,‡ Jian Ye, MD,‡ John G. Webb, MD*

Vancouver, British Columbia, Canada

ResultsPAVR was performed in 137 consecutive patients. All but 1 patient underwent planned arteriotomy closure using a
percutaneous pre-closure technique. Smaller sheaths, rigorous angiographic and computed tomographic screening
and patient selection, and percutaneous vascular repair techniques were increasingly used over this period. From
2009 to 2010, major vascular complications decreased from 8% to 1% (p = 0.06), minor vascular complications
decreased from 24% to 8% (p < 0.01), major bleeds fell from 14% to 1% (p < 0.01), and unplanned surgery de-
creased from 28% to 2% (p < 0.01). A minimal artery diameter smaller than the external sheath diameter, moderate
or severe calcification, and peripheral vascular disease were associated with higher vascular complication rates.

True percutaneous insertion

No need for general anesthesia

- Multiple valve sizes
- An easy sizing tool for annular size
- Smallest size possible <16 Fr</p>
- Smooth outer surface to pass through aorta
- Easy transition over arch
- Easy transit through valve
- "Self seating"
- Adequate radial strength
- Repositionable if needed
- Retrievable if needed
- No valve gradient
- Conforms to annulus without AR
- Long term durability

~~

Transcatheter Valve Therapies (TVT)

- True percutaneous insertion
- No need for general anesthesia

Multiple valve sizes

- An easy sizing tool for annular size
- Smallest size possible <16 Fr</p>
- Smooth outer surface to pass through aorta
- Easy transition over arch
- Easy transit through valve
- "Self seating"
- Adequate radial strength
- Repositionable if needed
- Retrievable if needed
- No valve gradient
- Conforms to annulus without AR
- Long term durability

~ ~ ~ ~

Edwards NovaFlex+ 29mm TF : Q2, 2012 CE Mark

• SAPIEN XT valves with dimensions and associated annulus size ranges

- True percutaneous insertion
- No need for general anesthesia
- Multiple valve sizes

An easy sizing tool for annular size

- Smallest size possible <16 Fr</p>
- Smooth outer surface to pass through aorta
- Easy transition over arch
- Easy transit through valve
- "Self seating"
- Adequate radial strength
- Repositionable if needed
- Retrievable if needed
- No valve gradient
- Conforms to annulus without AR
- Long term durability

Aortic Annulus Measurement

TOE:

- -Long Axis view
- -See valve leaflets
- -See the leaflet insertion / hinge

MSCT Assessment of Annulus

Figure 2 Three-Dimensional MDCT Aortic Annular Measurements

(A) Short and long diameters provide a mean annulus diameter and annular eccentricity. (B) Annular area. (C) Annular circumference. MDCT = multidetector computed tomography.

- Mean Diameter as Average of Smallest & Largest Diameters
- Mean Diameter as Annular Circumference / π
- Mean Diameter as $\sqrt{(4x \text{ Annular Area } / \pi)}$
- Annular Area
- Annular Circumference

Willson et al, JACC 2012

Willson et al, JACC 2012

11

- True percutaneous insertion
- No need for general anesthesia
- Multiple valve sizes
- An easy sizing tool for annular size

Smallest size possible <16 Fr</p>

- Smooth outer surface to pass through aorta
- Easy transition over arch
- Easy transit through valve
- "Self seating"
- Adequate radial strength
- Repositionable if needed
- Retrievable if needed
- No valve gradient
- Conforms to annulus without AR
- Long term durability

The Edwards eSheath - 16Fr

The eSheath expands from 16F to 18F which facilitates smooth delivery system passage, then returns to a reduced profile once the valve has passed through the sheath

Upcoming Development – 14Fr!

Edwards **SAPIEN 3** Valve

- Lower profile valve delivered through a14 Fr eSheath
- Discrete valve that anchors in the annulus
- Treated bovine pericardial tissue lleaflets
- Delivered through 14-French eSheath delivery systems

11

11

- True percutaneous insertion
- No need for general anesthesia
- Multiple valve sizes
- An easy sizing tool for annular size
- Smallest size possible <16 Fr</p>
- Smooth outer surface to pass through aorta
- Easy transition over arch
- Easy transit through valve
- "Self seating"
- Adequate radial strength
- Repositionable if needed
- Retrievable if needed
- No valve gradient
- Conforms to annulus without AR
- Long term durability

Crossing Arch and Native Aortic Valve with RetroFlex / NovaFlex Catheter

NovaFlex to Cross Unfolded Aorta Maximal Flexion and Tension on Wire

- True percutaneous insertion
- No need for general anesthesia
- Multiple valve sizes
- An easy sizing tool for annular size
- Smallest size possible <16 Fr</p>
- Smooth outer surface to pass through aorta
- Easy transition over arch
- Easy transit through valve
- "Self seating"
- Adequate radial strength
- Repositionable if needed
- Retrievable if needed
- No valve gradient
- Conforms to annulus without AR
- Long term durability

NovaFlex System – Easier to achieve co-axial alignment - Does no move much during valve deployment

Valve-in-valve Rescue

■ SOURCE (Edwards) – 1.4%

■ ADVANCE (CoreValve) – 4%

- True percutaneous insertion
- No need for general anesthesia
- Multiple valve sizes
- An easy sizing tool for annular size
- Smallest size possible <16 Fr</p>
- Smooth outer surface to pass through aorta
- Easy transition over arch
- Easy transit through valve
- "Self seating"
 - But ease of deployment improved + +
- Adequate radial strength
- Repositionable if needed
- Retrievable if needed
- No valve gradient
- Conforms to annulus without AR
- Long term durability

- True percutaneous insertion
- No need for general anesthesia
- Multiple valve sizes
- An easy sizing tool for annular size
- Smallest size possible <16 Fr</p>
- Smooth outer surface to pass through aorta
- Easy transition over arch
- Easy transit through valve
- "Self seating"

Adequate radial strength

- Repositionable if needed
- Retrievable if needed
- No valve gradient
- Conforms to annulus without AR
- Long term durability

Geometry of Edwards SAPIEN Post-implant

- □ Circularity (Min D / Max D >0.9) 98%
- Average Expansion 104%

Geometry of CoreValve Post-implant

Circularity (Min D / Max D >0.9)

- 0% at ventricular end
- 17% at leaflet nadie and central co-aptation
- None reach nominal diameter

- True percutaneous insertion
- No need for general anesthesia
- Multiple valve sizes
- An easy sizing tool for annular size
- Smallest size possible <16 Fr</p>
- Smooth outer surface to pass through aorta
- Easy transition over arch
- Easy transit through valve
- "Self seating"
- Adequate radial strength
- Repositionable if needed
- Retrievable if needed
- No valve gradient
- Conforms to annulus without AR
- Long term durability

- True percutaneous insertion
- No need for general anesthesia
- Multiple valve sizes
- An easy sizing tool for annular size
- Smallest size possible <16 Fr</p>
- Smooth outer surface to pass through aorta
- Easy transition over arch
- Easy transit through valve
- "Self seating"
- Adequate radial strength
- Repositionable if needed
- Retrievable if needed
- No valve gradient
- Conforms to annulus without AR
- Long term durability

11 11 Х X

True percutaneous insertion No need for general anesthesia **Multiple valve sizes** An easy sizing tool for annular size Smallest size possible <16 Fr Smooth outer surface to pass through aorta Easy transition over arch Easy transit through valve "Self seating" Adequate radial strength **Repositionable if needed Retrievable if needed** No valve gradient **Conforms to annulus without AR** Long term durability

11 11 Х X

PARTNER Cohort A Sustained Haemodynamic Improvement

Kodali, NEJM 2012

11

11

Х

X

True percutaneous insertion No need for general anesthesia Multiple valve sizes An easy sizing tool for annular size Smallest size possible <16 Fr Smooth outer surface to pass through aorta Easy transition over arch Easy transit through valve "Self seating" Adequate radial strength **Repositionable if needed Retrievable if needed** No valve gradient **Conforms to annulus without AR** Long term durability

PARTNER COHORT A - Aortic Regurgitation (As Treated)

Aortic Regurgitation

Hospital San	All TF	SAPIEN TF	CoreValve	р
Raffaele	(n = 245)	(n= 155)	(n = 90)	
AR 3 or 4+; N (%)	12 (4.9%)	6 (3.9%)	6 (6.7%)	.328

11

11

Х

X

X

True percutaneous insertion No need for general anesthesia Multiple valve sizes An easy sizing tool for annular size Smallest size possible <16 Fr Smooth outer surface to pass through aorta Easy transition over arch Easy transit through valve "Self seating" Adequate radial strength **Repositionable if needed Retrievable if needed** No valve gradient Conforms to annulus without AR Long term durability

Transcatheter Aortic Valve Implantation Durability of Clinical and Hemodynamic Outcomes Beyond 3 Years in a Large Patient Cohort

R. Gurvitch, MBBS; D.A. Wood, MD; E.L. Tay, MBBS; J. Leipsic, MD; J. Ye, MD;
S.V. Lichtenstein, MD, PhD; C.R. Thompson, MD; R.G. Carere, MD; N. Wijesinghe, MD;
F. Nietlispach, MD; R.H. Boone, MD; S. Lauck, RN; A. Cheung, MD; J.G. Webb, MD

- 70 patients who had Edwards SAPIEN valve implant with at least 3 year follow-up
- Median F/up 3.7 years
- Mean gradient increased from 10.0mmHg to 12.7mmHg (p=0.03)
- No structural deterioration or stent fracture

True percutaneous insertion 11 No need for general anesthesia Multiple valve sizes An easy sizing tool for annular size 11 Smallest size possible <16 Fr Smooth outer surface to pass through aorta Easy transition over arch Easy transit through valve "Self seating" Adequate radial strength **Repositionable if needed** Х X **Retrievable if needed** No valve gradient Conforms to annulus without AR X Long term durability ??

TAVI – Contemporary Results

	PARTNER B	PARTNER A	SOURCE	Canadian	FRANCE 2	CoreValve Meta- analysis	ADVANC E
N & Valve type	Edwards 179	Edwards 348	Edwards 2307	Edwards 339	Edwards 1145 CoreValve 540	CoreValve 2156	CoreValve 1015
Age	83.1	83.6	80.1	81.8	82.5	81.6	81
Logistic EuroScore	26.4%	29.3%	26.1%	N/A	22.6%	21.3%	19.2%
30 day Mortality	5.0%	3.4%	9.5%	10.4%	9.9%	6.6%	4.5%
30 day Stroke	6.7%	5.5%	2.9%	2.3%	3.8%	2.8%	2.9%
1 year Mortality	30.7%	24.2%	23.5%	24%	24%	17.1%	

TAVI – Contemporary Results

	PARTNE R B	PARTNE R A	SOURCE 1 & 2	Canadian	FRANCE 2	CoreValve Meta- analysis	ADVANC E	
N & Valve type	Edwards 179	Edwards 348	Edwards 2307	Edwards 339	Edwards 1145 CoreValve 540	CoreValve 2156	CoreValve 1015	
Vascular Cx	16.8%	11.0%	5.7%	13.0%	12.5%	4.2%	10.7%	
Bleeding	16.2%	9.3%	3.3%	N/A	18.4%	N/A	13.7%	
PPM	3.4%	3.8%	6.9%	4.9%	12.4%	28.7%	26.7%	

Conclusion

Is Edwards balloon expandable valve enoughProbably not

Is Edwards better than CoreValveYes in terms of PPM

What is Enough??

- True percutaneous insertion
- No need for general anesthesia
- Multiple valve sizes
- An easy sizing tool for annular size
- Smallest size possible <16 Fr</p>
- Smooth outer surface to pass through aorta
- Easy transition over arch
- Easy transit through valve
- "Self seating"
- Adequate radial strength
- Repositionable if needed
- Retrievable if needed
- No valve gradient
- Conforms to annulus without AR
- Long term durability

Same day admit Local anesthesia Versed/fentanyl Radial/fem insertion (7Fr) 4 hr recovery Home -----