

Limiting stent length: Back to Spot Stenting

8 min

Antonio Colombo

Centro Cuore Columbus, Milan, Italy Humanitas Research Hospital, Rozzano, Milan, Italy

No conflicts to disclose

HUMANITAS RESEARCH HOSPITAL

Intravascular Ultrasound-Guided Percutaneous Transluminal Coronary Angioplasty With Provisional Spot Stenting for Treatment of Long Coronary Lesions

Antonio Colombo, MD, FACC,* Joseph De Gregorio, MD, FACC,* Issam Moussa, MD,†
Yoshio Kobayashi, MD,† Evangelia Karvouni, MD,* Carlo Di Mario, MD, FACC,* Remo Albiero, MD,*
Leo Finci, MD, FACC,* Jeffrey Moses, MD, FACC†
Milan, Italy and New York, New York

LA 4.0mm² VA 15.7mm² %AS 74%

The procedure was complete if the treated segment satisfied either of the following two success criteria:

1) Lumen cross-sectional area (CSA) 50% of the vessel at the lesion site,

Or

2) minimal lumen CSA 5.5mm² for a 3 mm vessel.

These criteria can be utilized to guide optimal lesion preparation before DCB

Long diffuse disease of the RCA

Hybrid treatment to avoid long
stenting

Initial Angiogram

- (A) True left main bifurcation disease (Medina 1,1,1)
- (B) Mid-LAD critical stenosis involving big septal branch
- (C) Diffuse distal LAD disease with TIMI-II flow.

Final angiogram

45% diabetics

JACC: CARDIOVASCULAR INTERVENTIONS

© 2013 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION

PUBLISHED BY ELSEVIER INC.

The Role of Drug-Eluting Balloons Alo Combination With Drug-Eluting Stent Treatment of De Novo Diffuse Coronan

Charis Costopoulos, MD,*†‡ Azeem Latib, MD,*† Toru Naganu Alessandro Sticchi, MD,* Filippo Figini, MD,* Sandeep Basavara Mauro Carlino, MD,* Alaide Chieffo, MD,* Matteo Montorfano, Masanori Kawaguchi, MD,*† Francesco Giannini, MD,* Antonio

Milan, Italy; and London, United Kingdom

Clinical Outcomes	$\begin{array}{c} DEB \pm DES \; Strategy \\ (n=69) \end{array}$	DES-Alone Strategy $(n = 93)$
n-hospital events		
MI	3 (4.3)	5 (5.4)
ST (definite/probable)	0	1 (1.1)
Death	0	0
follow-up events		
Death	4 (5.8)	6 (6.5)
Cardiac cause	2 (2.9)	2 (2.2)
Noncardiac cause	2 (2.9)	4 (4.3)
TVR	8 (11.6)	13 (14.0)
TLR	5 (7.2)	10 (10.8)
MI	0	1 (1.1)
ST (definite (p. Jubile)	U	0
MACE*	13 (18.8)	23 (24.7)
TLR (per lesion)	5/93 (5.4)	10/93 (10.8)

LONG DE NOVO LAD DISEASE

DCB-based PCI (N=147)

- Hybrid PCI in 70.8% of pts
- DCB length > DES length in 61.9% of patients

DES-only PCI (N=701)

Short (<23 mm) DES excluded

1:1 PSM to account for imbalance in baseline clinical and angiographic covariates → 144 matched pairs

More diffuse treatment with lower DES length in the DCB group

	DCB	DES	P value
Treated length (mm)	65 (40-82)	53 (45-62)	<0.001
Treated length ≥60 mm (%)	60.4	34	<0.001
DES length (mm)	38 (24-62)	53 (45-62)	<0.001
Large vessel (≥3 mm) (%)	76.4	81.3	0.31

More dissections with DCB (non flow-limiting in 69.8%)

Higher risk of SB closure with DES

2-YEAR FOLLOW-UP

Similar TLR rate in the overall cohort

8 18 HR 0.96 (95% CI: 0.38-2.12), 8 Event rate (%) p=0.906 40 TVR 2 MACE 730 545 180 365 Number at risk DES 623 557 505 459 48 424 28 123 DC8, 142

Lower risk of TLR with DCB after PSM

The availability of DCB will improve the long term results of SPOT Stenting and introduce NO stenting