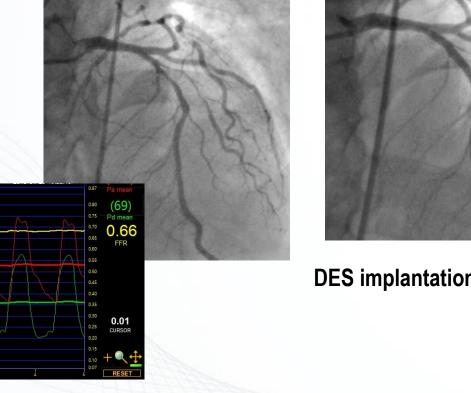
## Long-term Prognostic Impact of FFR After Coronary Stenting Insights From International Post-PCI FFR Extended registry

Doyeon Hwang, MD<sup>1</sup>, Jaewook Chung, MD<sup>1</sup>, Joo Myung Lee, MD, MPH, PhD<sup>2</sup>, Hyun-Jong Lee, MD, PhD<sup>3</sup>, Chang-Wook Nam, MD, PhD<sup>4</sup>, Eun-Seok Shin, MD, PhD<sup>5</sup>, Joon-Hyung Doh, MD, PhD<sup>6</sup>, Akiko Matsuo, MD<sup>7</sup>, Hitoshi Matsuo, MD, PhD<sup>8</sup>, Shao-Liang Chen, MD, PhD<sup>9</sup>, Tsunekazu Kakuta, MD, PhD<sup>10</sup>, and <u>Bon-Kwon Koo, MD, PhD<sup>1</sup></u>

<sup>1</sup>Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea <sup>2</sup>Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea <sup>3</sup>Department of Internal Medicine, Sejong General Hospital, Bucheon, Korea <sup>4</sup>Department of Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea <sup>5</sup>Division of Cardiology, Ulsan Hospital, Ulsan, Korea <sup>6</sup>Department of Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea <sup>7</sup>Department of Cardiology, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan <sup>8</sup>Department of Cardiovascular Medicine, Gifu Heart Center, Japan <sup>9</sup>Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China <sup>10</sup>Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan

## **Disclosure Statement of Financial Interest**


Within the past 12 months, I, [Bon-Kwon Koo] have had a financial interest/arrangement or affiliation with the organizations listed below:

 Grant/Research Support: Institutional Research Grants from Abbott, Philips, and HeartFlow

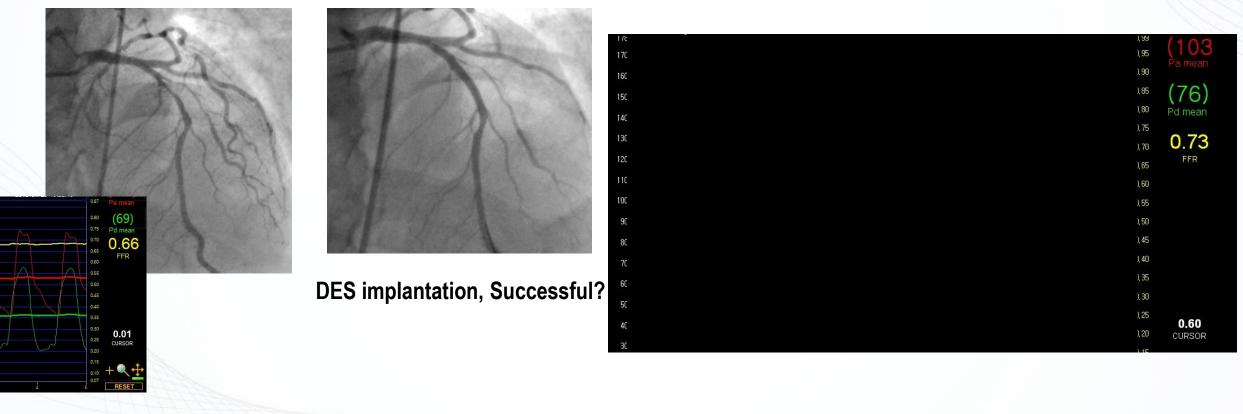


## **Post-PCI FFR**

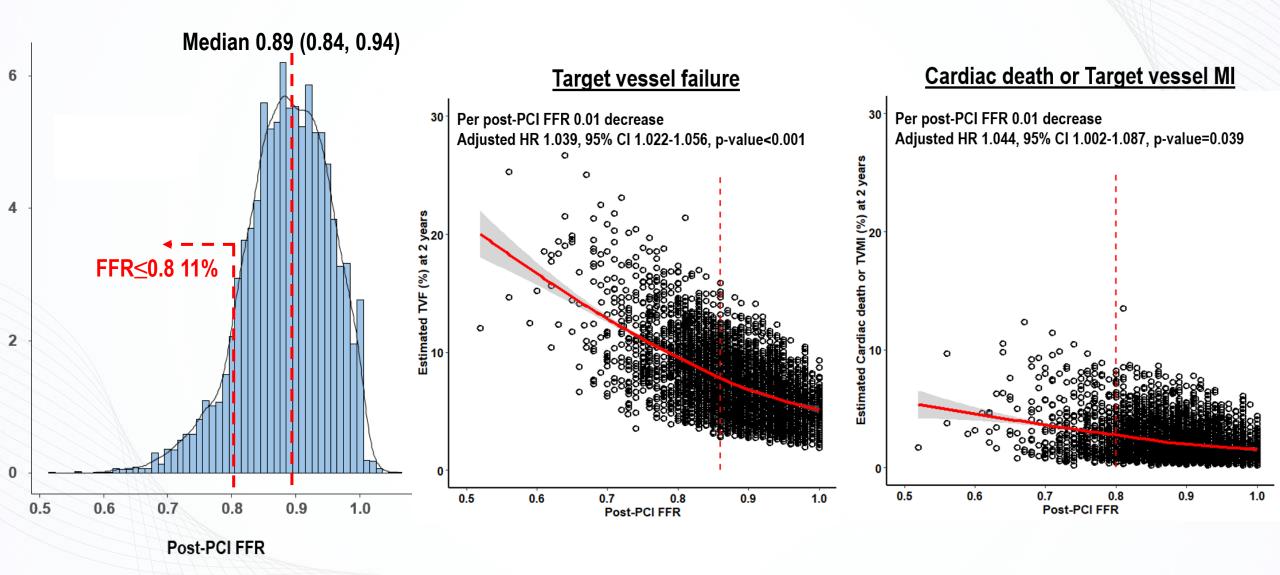
• Post-PCI FFR represents the degree of flow reduction due to residual disease in the coronary artery after (successful) stent implantation.






**DES implantation, Successful?** 






## **Post-PCI FFR**

• Post-PCI FFR represents the degree of flow reduction due to residual disease in the coronary artery after (successful) stent implantation.



#### Post-stent FFR, IPD meta-analysis (n=4825)



28th TCTAF

Hwnag D, et al. JAMA Netw Open 2022

CVRF

## **Post-PCI FFR**

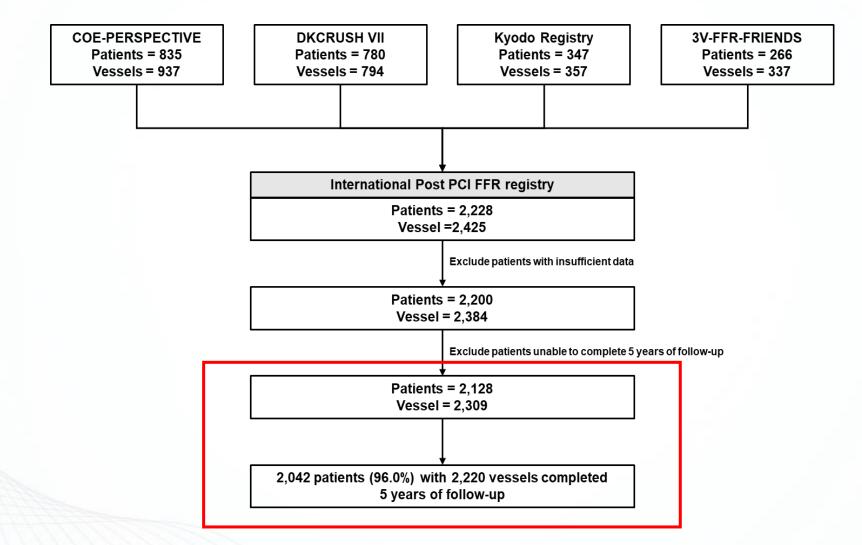
- Post-PCI FFR represents the degree of flow reduction due to residual disease in the coronary artery after (successful) stent implantation.
- Low post-PCI FFR or sub-optimal physiologic results after stenting is not uncommon.
- Several previous studies have shown that low FFR after stenting is associated with higher risk of clinical events.
- However, long-term prognostic impact of post-PCI FFR has not been well defined.

## **Study Objectives**

 To evaluate the long-term prognostic impact of post-PCI FFR after 2<sup>nd</sup> G DES implantation

- 2. To investigate the long-term prognostic value of post-PCI FFR cut-off values
- To investigate the location of revascularization according to post-PCI FFR value

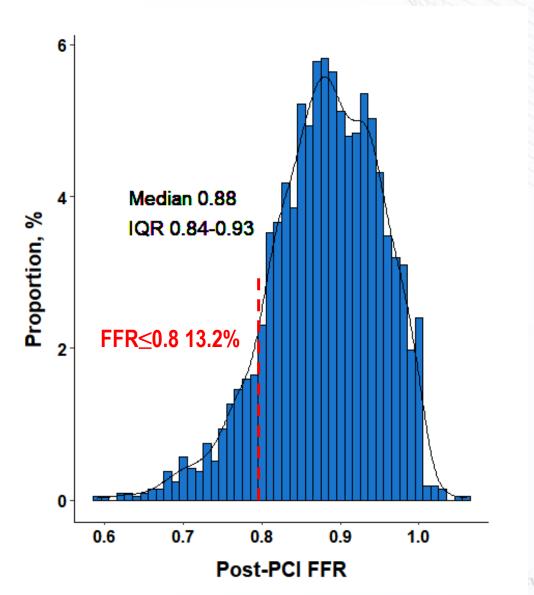



## **Study Population and Methods**

- Extended version of the International Post-PCI FFR registry (NCT04684043)
  - 4 Asian registries from Korea, China and Japan
  - FFR measurement after angiographically successful 2nd generation DES implantation
  - 5-year follow-up clinical outcomes (till May 2021)
- Primary outcome
  - Target vessel failure (TVF): a composite of cardiac death, target vessel myocardial infarction and target vessel revascularization
  - Optimal cut-off value: 0.86 (from POST-PCI FLOW study\*)
- Secondary outcome
  - Cardiac death or target vessel myocardial infarction
  - Optimal cut-off value: 0.80 (from POST-PCI FLOW study\*)



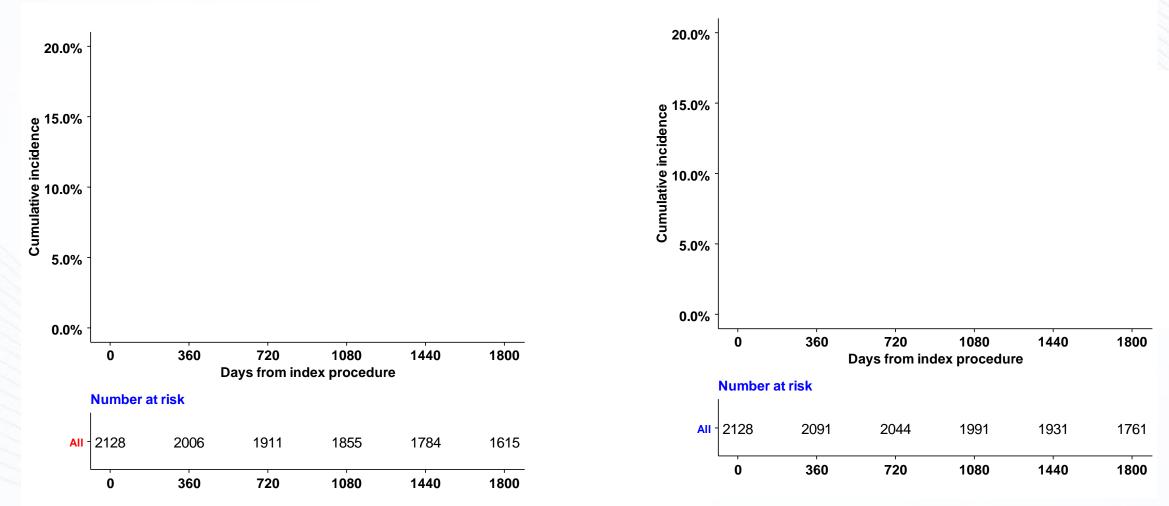
## **Study Population and Methods**


#### International Post-PCI FFR Extended registry (NCT05672862)





## **Baseline Characteristics**


| General characteristics        |               |
|--------------------------------|---------------|
| Age, years                     | 64.2±10.0     |
| Male                           | 1,628 (76.6%) |
| Cardiovascular risk factors    |               |
| Hypertension                   | 1,429 (67.2%) |
| Diabetes mellitus              | 713 (33.6%)   |
| Hypercholesterolemia           | 1,060 (49.9%) |
| Current smoker                 | 641 (30.2%)   |
| Clinical presentation          |               |
| Acute coronary syndrome        | 1,119 (52.7%) |
| Stable coronary artery disease | 1,006 (47.3%) |
| Target vessel                  |               |
| LAD                            | 1,498 (70.4%) |
| LCX                            | 250 (11.7%)   |
| RCA                            | 380 (17.9%)   |
| QCA after stent implantation   |               |
| Reference vessel diameter, mm  | $3.0 \pm 0.5$ |
| Diameter stenosis, %           | 9.2±7.2       |
| Total stent number             | 1.5±0.8       |
| Total stent length, mm         | 32.3±15.8     |



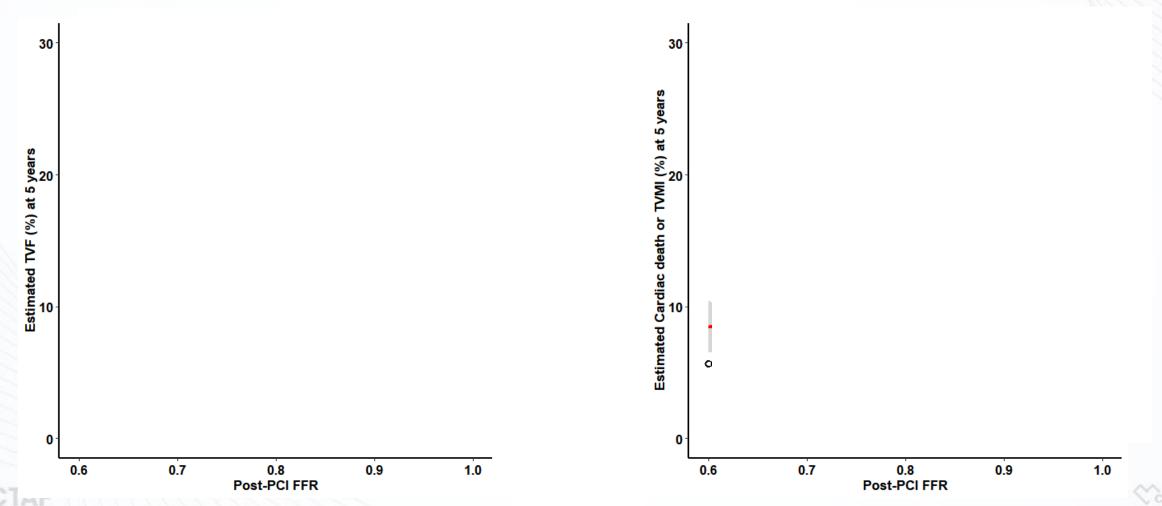
## **5-year clinical outcomes**

Target vessel failure

Cardiac death or TVMI

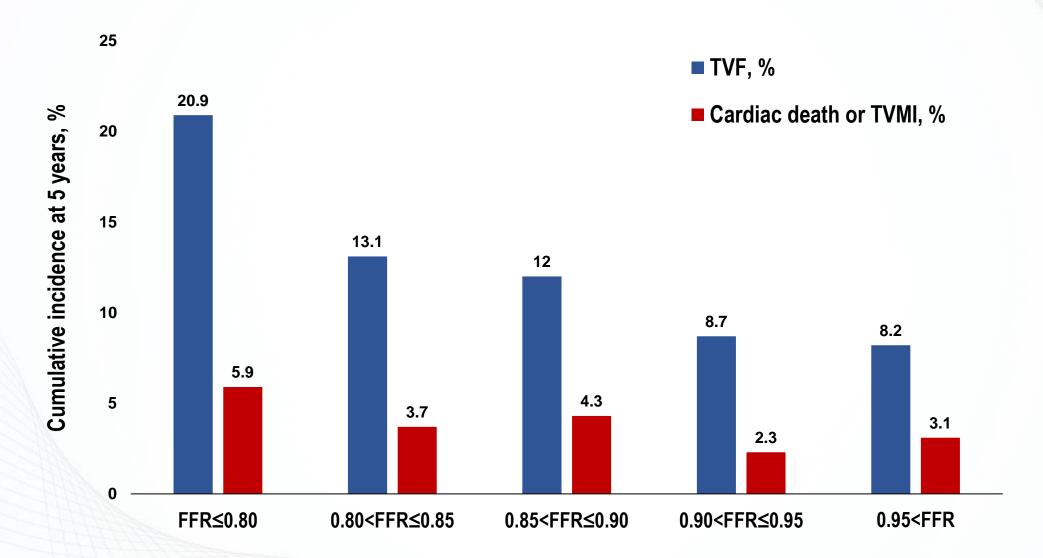


CVRF


## **Predictors for clinical events**

| Target vessel failure               | Adjusted HR (95% CI) | p-value |
|-------------------------------------|----------------------|---------|
| Post-stent FFR, every 0.01 decrease | 1.05 (1.03-1.07)     | <0.001  |
| Age, every 1 year increase          | 1.02 (1.01-1.04)     | 0.001   |
| Male                                | 1.42 (1.03-1.97)     | 0.034   |
| Diabetes mellitus                   | 1.29 (1.00-1.68)     | 0.052   |
| Cardiac death or TVMI               | Adjusted HR (95% CI) | p-value |
| Post-stent FFR, every 0.01 decrease | 1.04 (1.01-1.08)     | 0.015   |
| Age, every 1 year increase          | 1.07 (1.05-1.10)     | <0.001  |
| Diabetes mellitus                   | 1.69 (1.07-2.69)     | 0.026   |

### **Post-PCI FFR and Risk for clinical events**

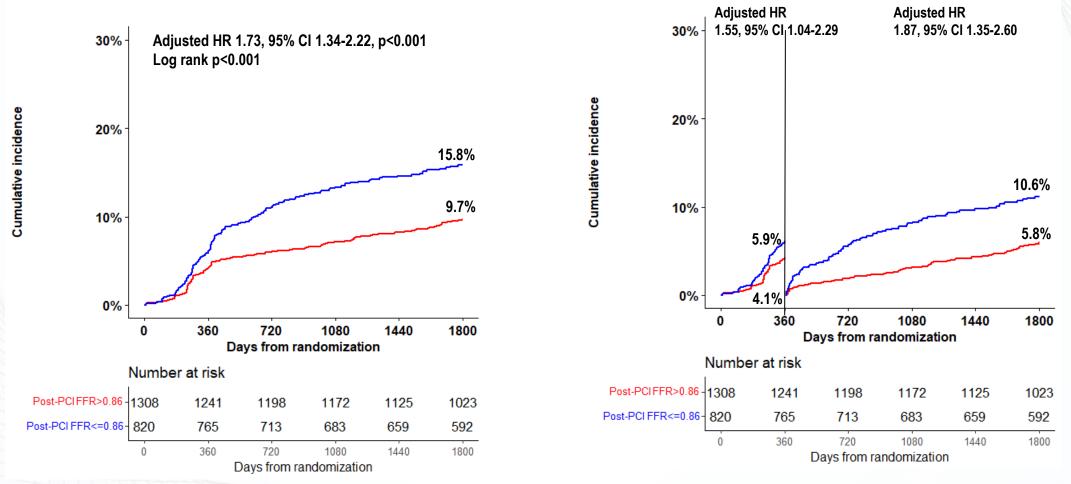

Target vessel failure

Cardiac death or TVMI



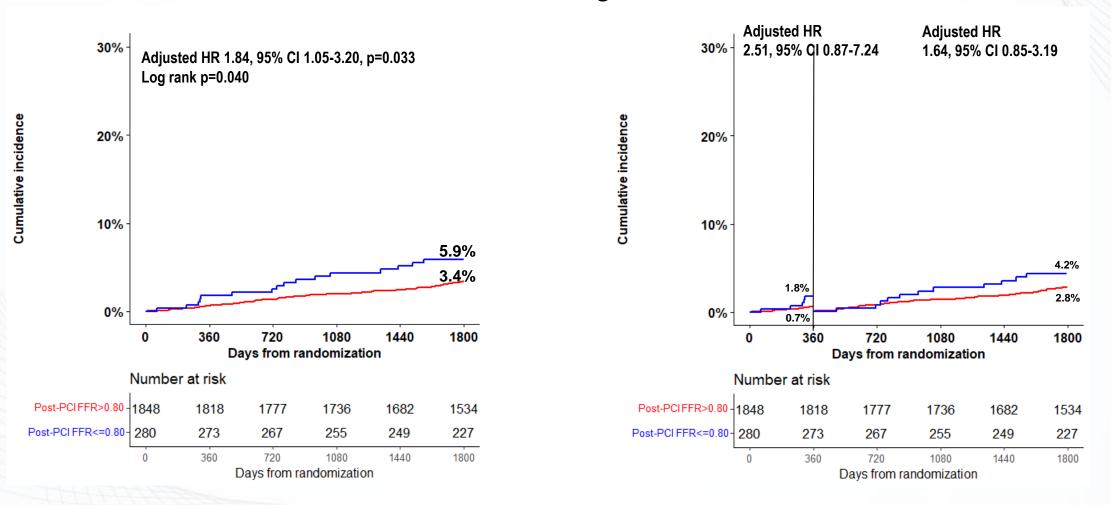
CVBP

### **Post-PCI FFR and Risk of clinical events**




28th TCTAP

CVRF


## Risk for clinical events according to optimal cut-off value

**Target vessel failure** 



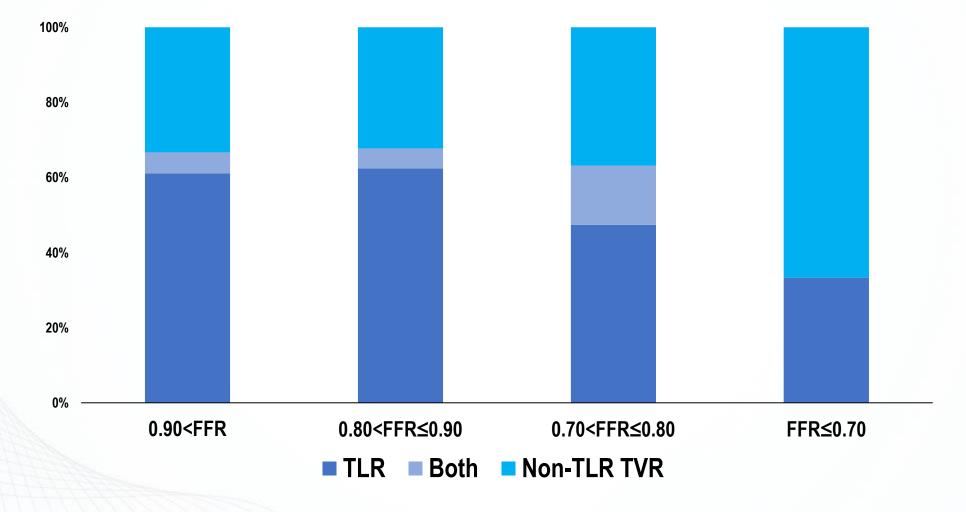
## Risk for clinical events according to optimal cut-off value

Cardiac death or Target vessel MI



CVRF

#### **Risk for clinical events according to FFR in subgroups**


|                               | Patient<br>number |                  | Adjusted HR*(95% CI)      | p-value | Interactio<br>p-value |
|-------------------------------|-------------------|------------------|---------------------------|---------|-----------------------|
| arget vessel failure (0.86)   |                   |                  |                           |         |                       |
| Age≥65 years                  | 1,090             |                  | 1.70 (1.22-2.37)          | 0.002   | 0.881                 |
| Age<65years                   | 1,035             | <u>;</u> ⊢-∎1    | 1.75 (1.19-2.58)          | 0.005   |                       |
| Male                          | 1,628             | . ⊢∎-1           | 1.69 (1.28-2.23)          | <0.001  | 0.927                 |
| Female                        | 497               | :⊢∎              | 2.00 (1.12-3.58)          | 0.020   |                       |
| With HTN                      | 1,429             | ┊┝╋┥             | 1.81 (1.34-2.45)          | <0.001  | 0.562                 |
| Without HTN                   | 696               | į <b>—∎</b> _4   | 1.54 (0.98-2.43)          | 0.061   | 0.562                 |
| With DM                       | 713               | j <b>⊢∎</b>      | 2.06 (1.38-3.06)          | <0.001  | 0.261                 |
| Without DM                    | 1,412             | ÷⊢∎(             | 1.53 (1.11-2.13)          | 0.010   | 0.261                 |
| ACS                           | 1,119             | ┊┝╼╋╼┥           | 1.79 (1.27-2.52)          | <0.001  | 0.001                 |
| Non-ACS                       | 1,006             | ⋮ <b>⊢-∎-</b> -( | 1.69 (1.17-2.45)          | 0.005   | 0.821                 |
| With Intracoronary imaging    | 1,160             | <u>;</u> ⊢-∎(    | 1.56 (1.12-2.17)          | 0.008   | 0.424                 |
| Without Intracoronary imaging | 816               | <b>⊢_∎_</b>      | 1.83 (1.18-2.81)          | 0.006   |                       |
| Cardiac death or TVMI (0.80)  | 0.1               | 1                | 10                        |         |                       |
| Age≥65 years                  | 1,090             | ·∎               | 2.33 (1.24-4.37)          | 0.009   | 0.249                 |
| Age<65years                   | 1,035 🛏           |                  | 0.92 (0.26-3.22)          | 0.900   |                       |
| Male                          | 1,628             | ;<br>;           | 1.81 (0.97-3.39)          | 0.063   | 0.854                 |
| Female                        | 497               |                  | 1.93 (0.54-6.81)          | 0.309   |                       |
| With HTN                      | 1,429             | ·                | 2.27 (1.21-4.29)          | 0.011   | 0.226                 |
| Without HTN                   | 696               | ⊢i∎(             | 1.11 (0.32-3.83)          | 0.873   |                       |
| With DM                       | 713               | ∎                | <b>–</b> 2.49 (1.21-5.10) | 0.013   | 0.372                 |
| Without DM                    | 1,412             | ┝────┫           | 1.33 (0.52-3.43)          | 0.552   |                       |
| ACS                           | 1,119             |                  | 2.22 (1.05-4.66)          | 0.036   | 0.373                 |
| Non-ACS                       | 1,006             | ⊢∔∎−−−−          | 1.53 (0.66-3.54)          | 0.326   |                       |
| With Intracoronary imaging    | 1,160             | <b>⊢</b>         | 1.53 (0.67-3.51)          | 0.315   | 0.379                 |
| Without Intracoronary imaging | 816               | <b></b>          | <b>—</b> 2.51 (1.10-5.73) | 0.029   |                       |
|                               | 0.1               | 1                | 10<br>CLEED is better     |         |                       |

28th TCTAP

Low post-PCI FFR is better High post-PCI FFR is better

#### Location of revascularization according to post-PCI FFR

#### **Proportions of revascularization**



# Summary

- Low post-PCI FFR was not uncommon.
- Post-PCI FFR was inversely associated with the 5-year risk of TVF and of cardiac death or MI, and was an independent predictor for 5-year clinical outcomes.
- Low post PCI FFR (≤0.86 for TVF, ≤ 0.80 for cardiac death or MI) was associated with the increased risk for both the short- and long-term clinical events. This finding was consistent in subgroups.
- As post-PCI FFR value decreased, events occurred more in non-stented segments.

# Limitations

- The study population was from 4 different observational registries, and the inherent limitations of observational registry study should be considered.
- We could not evaluate the role of intracoronary imaging, such as OCT or IVUS on the post-stent FFR value and clinical outcomes.
- The data on pullback pressure recordings of post-PCI FFR were not available.
- Information regarding medical treatment was not available in this study.



# Conclusions

 Low post-PCI FFR values are common after DES implantation, and independently associated with the long-term risk of TVF and of cardiac death or TVMI.

• These results indicate prognostic value of post-PCI physiologic assessment in patients with DES implantation.



