29th TCTAP 2024 Apr 25-27, Incheon, Korea

AI-Enabled Vulnerable Plaque Characterization

Bon-Kwon Koo, MD, PhD

Seoul National University Hospital, Seoul, Korea

ACS prevention is Necessary, but Difficult!

• Three-fourths of myocardial infarction and two-thirds of sudden death present as new coronary artery events. Accordingly, upfront risk evaluation is required.

ACS risk assessment, Which one?

FFR, CFR, IMR, NHPR...

Vulnerability Assessment using CCTA

Prediction of acute coronary syndrome using CCTA

EMERALD study

<u>Exploring the ME</u>chanism of the Plaque <u>R</u>upture in <u>A</u>cute Coronary Syndrome using Coronary CT Angiography and Computationa<u>L</u> Fluid <u>D</u>ynamics

Seoul National University Hospital

Cardiovascular Center

SNUH

The EMERALD II Trial

Artificial Intelligence-Enabled Quantitative Plaque and Hemodynamic Analysis (AI-QCPHA) for Predicting ACS Risk and Prevention Strategy

Objectives

The current study aims to

1. Identify the coronary CT angiography (CCTA) features that can define the high risk lesion for future ACS using **AI-based quantitative analysis (AI-QCPHA)**

- 2. Investigate the additive value of AI-QCPHA to the conventional CCTA assessment
- 3. Explore the potential implication of AI-QCPHA for selecting ACS prevention strategies

Study Population

The EMERALD II (Exploring the Mechanism of Plaque Rupture in Acute Coronary Syndrome using Coronary CT

Angiography and Computational Fluid Dynamics II) study (NCT03591328)

- From 9 countries (United States, Canada, Denmark, Italy, Hungary, Belgium, Australia, Japan, and South Korea).
- ACS patients who underwent CCTA 1 month to 3 years prior to the ACS event
- Exclusion criteria
 - No clear evidence of culprit lesion
 - Previous stent implantation in two or more coronary arteries prior to CCTA
 - Revascularization between CCTA and the ACS event
 - ACS culprit lesion in a previously stented segment, secondary ACS, or history of coronary artery bypass graft surgery
 - Poor quality CCTA not suitable for quantitative plaque and hemodynamic analysis

Primary Hypothesis and Sample Size Calculation

- Working hypothesis
 - Al-enabled quantitative plaque and hemodynamic analysis could enhance the discrimination ability for identification of ACS culprit lesions.
- Sample size calculation

Derivation cohort:

- EMERALD I study Addition of △FFR_{CT}, WSS, and % NCPV to conventional CCTA analysis (% diameter stenosis and APC) improved predictability for culprit lesions: area under the curve 0.76 → 0.80
- 241 patients for the increment in the discrimination index of the new prediction model with 80% of power at a type I error rate of 5%.

Validation cohort:

• Required sample size with the assumption of ICC of 0.01 was at least 102 patients to secure a certain level of precision.

Total population: 429 patients needed to be enrolled considering a potential drop-out rate of 20%.

SNUH Seoul National University Hospital Cardiovascular Center

Study Flow

SNUH® Seoul National University Hospital

Koo BK, Yang SH, et al. JACC imaging 2024

Standard CCTA analysis vs. Al-QCPHA

Standard CCTA analysis

Baseline Patient Characteristics

	Total patients (n=351)
Age	65.9±11.7
Male	261 (74.4)
Diagnosis	
Myocardial infarction	223 (63.5)
NSTEMI	128 (36.5)
STEMI	95 (27.1)
Unstable angina	128 (36.5)
Diabetes	116 (33.0)
Hypertension	258 (73.5)
Hyperlipidemia	218 (62.1)
Current smoker	84 (23.9)
Time from CCTA to ACS event (days)	375.0 [95.0; 644.5]
Medications at the time of CCTA	
Aspirin or P2Y12 inhibitor	155 (44.3)
ACEi/ARB	127 (36.3)
Beta-blocker	82 (23.4)
Calcium channel blocker	89 (25.4)
Statin	134 (38.3)

Al-QCPHA: Culprit vs. Non-culprit in CCTA before ACS

	Derivation cohort		
	Non-culprit lesion (n=1,247)	Culprit lesion (n=248)	P-value
Quantitative plaque analysis			
Plaque burden, %	73.1±15.0	85.2±10.2	<0.001
Total Plaque Volume (TPV), mm ³	79.9±72.3	132.8±96.9	<0.001
Non-calcified plaque volume (NCPV), mm ³	70.1±60.1	114.9±82.4	<0.001
Low attenuation plaque volume (LAPV), mm ³	2.2 ± 2.9	4.5±5.1	<0.001
% TPV	60.1±14.5	69.3±10.8	<0.001
% NCPV	54.2±13.1	61.5±12.0	<0.001
% LAPV	2.0±2.3	2.8±3.0	<0.001
Quantitative hemodynamic analysis			
ΔFFR _{ct}	0.05±0.08	0.16±0.14	<0.001
Peak FFR _{c⊤} gradient	0.02±0.05	0.08±0.09	<0.001
Averaged WSS, dyne/cm ²	151.2±103.0	229.8±133.7	<0.001
Peak WSS, dyne/cm ²	598.2±861.4	1550.1±1509.6	<0.001
Averaged axial plaque stress (APS), dyne/cm ²	1084.1±1970.8	1671.6±1845.1	<0.001
Peak APS, dyne/cm ²	30572.7±15631.5	39968.8±17575.6	<0.001
Averaged % total myocardial blood flow (MBF)	22.6±12.2	25.0±9.6	0.001
Peak % total MBP	23.6±13.1	27.2±11.7	<0.001
Averaged % left ventricular MBF	23.8±13.7	26.9±11.4	<0.001
Peak % left ventricular MBF	24.7±14.8	29.3±14.3	<0.001

J Seoul National University Hospital Cardiovascular Center

Selection of best AI-QCPHA features

Best AI-QCPHA features: ΔFFR_{CT}, plaque burden, total plaque volume, low attenuation plaque volume, and % total myocardial blood flow (myocardial mass at risk)

Standard CCTA analysis

ACS risk according to stenosis and plaque character

SNUH Seoul National University Hospital Cardiovascular Center

Incremental value of AI-QCPHA features over conventional assessment

SNUH® Seoul National University Hospital Cardiovascular Center

16

Comparison between AI-QCPHA features and the best model

SNUH Seoul National University Hospital Cardiovascular Center

17

Selection of Treatment Strategy: Probability is not enough!

- 1. Probability for events
- 2. Treatment target: Plaque quantity? Plaque quality?

Degree of luminal narrowing? Physiologic significance?

3. Time to event: 6months? 2 years? 5 years?

Selection of Treatment Strategy: Probability is not enough!

SNUH® Seoul National University Hospital Cardiovascular Center

19

AI-Enabled Vulnerable Plaque Characterization

- Al-enabled non-invasive plaque and hemodynamic analysis can enhance the prediction of ACS risk and the detection of the target lesions for revascularization.
- Integration of this novel algorithm in clinical practice can prevent ACS/sudden cardiac death and optimize treatment strategy for patients with coronary artery disease.

