

**TCTAP 2024** 



# Updated Thoughts on Left Main Bifurcation PCI: Simple (Provisional) vs Structured (2-Stent) Practical Approach

Dr Tan Huay Cheem

 PPM, MBBS, M Med(Int Med), MRCP (UK), FRCP(Edin), FAMS, FACC, FSCAI Director, National University Heart Centre, Singapore (NUHCS)
Professor of Medicine, Yong Loo Lin School of Medicine, National University of Singapore Chairman, Singapore Heart Foundation



#### What Is Provisional Stenting?

**Provisional** or conditional stenting should be **defined** as the use of **stents** limited to those conditions and cases in which the operator, despite an aggressive balloon angioplasty technique with large balloons and high pressure, has been unable to obtain a result that ensures optimal chances of early and late patency.

Technique vs Strategy/ Philosophy



## **Provisional Stenting**

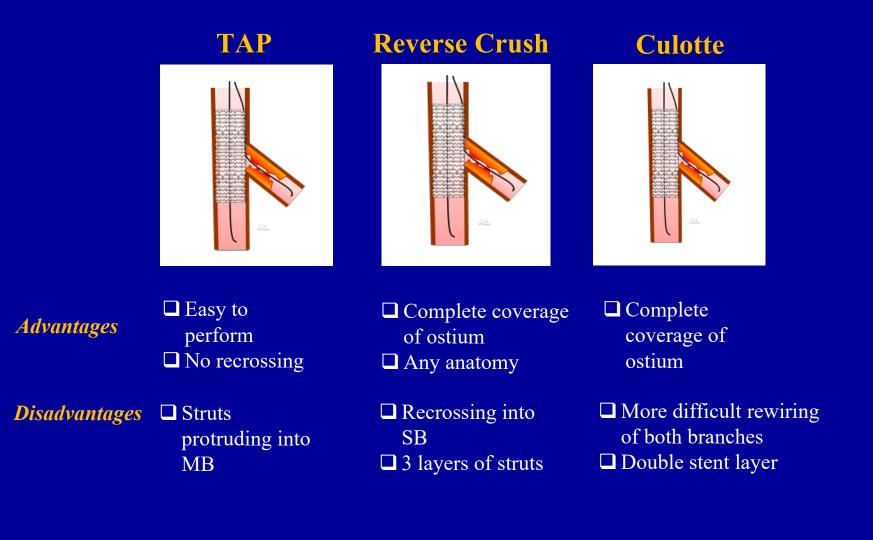
- Simple and Fast
- Excellent short term and long term results
- Reserves all other options in case of failure
- > 60% of patients with LM bifurcation can be treated using the provisional technique



Catheter Cardiovasc Interv 2011; 77: 775-82

## **Side Branch (SB) Stenting**

SB stenting should be considered when:


- there is significant SB flow impairment (Thrombolysis In Myocardial Infarction TIMI flow grade <3)</li>
- in the presence of a major SB dissection
- when the SB is diseased and large enough to lead to significant residual ischemia
- when future access toward the SB may be important

EuroIntervention 2018; 13: 1540-1553

FJ Sawaya et al JACC CV Intv 2016; 18: 1861-1878



## **Provisional Requiring A 2nd Stent - Bailout Options**



**Iakovou I et al JACC 2006; 46: 1446-1455** 



# What Are The Clinical Evidence For Left Main Provisional vs 2-Stent Strategies?



## **Left Main PCI: Provisional vs 2-Stent Strategies**

European Society European Heart Journal (2021) 00, 1–11 of Cardiology doi:10.1093/eurhearti/ehab283

FASTTRACK CLINICAL RESEARCH Clinical trials

#### The European bifurcation club Left Main Coronary Stent study: a randomized comparison of stepwise provisional vs. systematic dual stenting strategies (EBC MAIN)

David Hildick-Smith (a) <sup>1,\*</sup>, Mohaned Egred (a) <sup>2</sup>, Adrian Banning (a) <sup>3</sup>, Philippe Brunel<sup>4</sup>, Miroslaw Ferenc (a) <sup>5</sup>, Thomas Hovasse<sup>6</sup>, Adrian Wlodarczak (a) <sup>7</sup>, Manuel Pan<sup>8</sup>, Thomas Schmitz<sup>9</sup>, Marc Silvestri<sup>10</sup>, Andreis Erglis<sup>11</sup>, Evgeny Kretov<sup>12</sup>, Jens Flensted Lassen<sup>13</sup>, Alaide Chieffo (a) <sup>14</sup>, Thierry Lefèvre<sup>6</sup>, Francesco Burzotta (a) <sup>15</sup>, James Cockburn<sup>1</sup>, Olivier Darremont<sup>16</sup>, Goran Stankovic (b) <sup>17</sup>, Marie-Claude Morice<sup>6</sup>, and Yves Louvard<sup>6</sup>

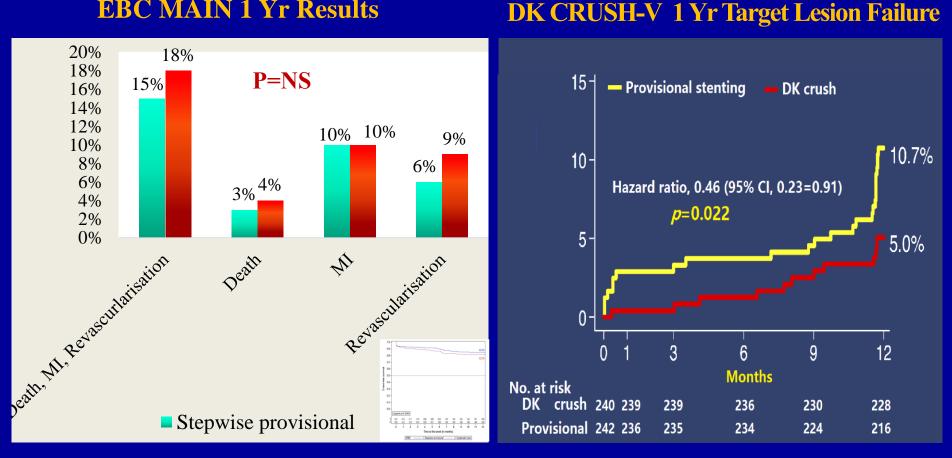


JACC JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY

**ORIGINAL INVESTIGATIONS** 

#### Double Kissing Crush Versus Provisional Stenting for Left Main Distal Bifurcation Lesions

**DKCRUSH-V Randomized Trial** 


Shao-Liang Chen, MD,<sup>a</sup> Jue-Jie Zhang, PHD,<sup>a</sup> Yaling Han, MD,<sup>b</sup> Jing Kan, MBBS,<sup>a</sup> Lianglong Chen, MD,<sup>c</sup> Chunguang Qiu, MD,<sup>d</sup> Tiemin Jiang, MD,<sup>c</sup> Ling Tao, MD,<sup>f</sup> Hesong Zeng, MD,<sup>g</sup> Li Li, MD,<sup>h</sup> Yong Xia, MD,<sup>i</sup> Chuanyu Gao, MD,<sup>j</sup> Teguh Santoso, MD,<sup>k</sup> Chootopol Paiboon, MD,<sup>j</sup> Yan Wang, MD,<sup>m</sup> Tak W. Kwan, MD,<sup>n</sup> Fei Ye, MD,<sup>o</sup> Nailiang Tian, MD,<sup>o</sup> Zhizhong Liu, PHD,<sup>a</sup> Song Lin, MD,<sup>o</sup> Chengzhi Lu, MD,<sup>p</sup> Shangyu Wen, MD,<sup>q</sup> Lang Hong, MD,<sup>r</sup> Qi Zhang, MD,<sup>s</sup> Imad Sheiban, MD,<sup>r</sup> Yawei Xu, MD,<sup>u</sup> Lefeng Wang, MD,<sup>v</sup> Tanveer S. Rab, MD,<sup>w</sup> Zhanquan Li, MD,<sup>x</sup> Guanchang Cheng, MD,<sup>y</sup> Lianqun Cui, MD,<sup>2</sup> Martin B. Leon, MD,<sup>aa</sup> Gregg W. Stone, MD<sup>aa</sup>

Chieffo et al EuroInterv 2016; 12: 47-52 SL Chen et al J Am Coll Cardiol 2017; 70: 2605–17



## **Provisional vs 2-Stent Strategies**

#### **EBC MAIN 1 Yr Results**



Chieffo et al EuroInterv 2016; 12: 47-52 **SL Chen et al J Am Coll Cardiol 2017; 70: 2605–17** 

#### **Study Inclusion Criterias**

|                               | EBC Main                              | DK-CRUSH V                                      |  |  |
|-------------------------------|---------------------------------------|-------------------------------------------------|--|--|
| Primary endpoint<br>at 1-year | Death, MI, TLR;<br>Superiority design | Cardiac death, TVMI, TLR;<br>Superiority design |  |  |
| Sample size                   | Estimated 450; Final 467              | Estimated 484; Final 482                        |  |  |
| SYNTAX scores                 | <32 scores (23)                       | No limit (31)                                   |  |  |
| AMI                           | >72 h                                 | >24 h                                           |  |  |
| СТО                           | Excluded                              | Included after successful PCI                   |  |  |
| Two-stent exact<br>usage      | Culotte 53%; TAP 33%<br>DK Crush 5%   | DK Crush 100%                                   |  |  |



#### **Assumptions and Lesion Characteristics**

|                                                    | EBC Main                                           | DK CRUSH V                                       |  |
|----------------------------------------------------|----------------------------------------------------|--------------------------------------------------|--|
| Lesion types                                       | Medina 1,1,1/0,1,1                                 | Medina 1,1,1/0,1,1                               |  |
| Primary endpoint<br>at 1-year (stat<br>assumption) | 14% in provisional group<br>25% in two-stent group | 14% in provisional group<br>6% in DK crush group |  |
| No. PCI yearly                                     | >150 per operator                                  | >300 per operator,<br>≥20 LM-PCI                 |  |
| SYNTAX scores                                      | 23                                                 | 31                                               |  |
| SB lesion length                                   | 7 mm                                               | 16 mm                                            |  |
| Complexity                                         | Not classified Complex bifurcation 31.5%           |                                                  |  |



#### **Procedures and Outcomes**

|                         |       | EBC                                   | Main                      | DK CRUSH V                                 |          |  |
|-------------------------|-------|---------------------------------------|---------------------------|--------------------------------------------|----------|--|
| Cross-over to 2-stent   |       | 22                                    | 2%                        | 47%                                        |          |  |
| Reasons for treating SB |       | · · · · · · · · · · · · · · · · · · · | A dissection,<br>mpromise | TIMI <3, >A dissection,<br>>75% compromise |          |  |
| IVUS use                |       | 40                                    | 0%                        | 41%                                        |          |  |
| Endpoints               |       | Provisional                           | Two-stent                 | Provisional                                | DK Crush |  |
| Primary                 |       | 14.7%                                 | 17.7%                     | 10.7%                                      | 5.0%     |  |
| Seondary                | Death | 3.0%                                  | 4.2%                      | CD:2.1%                                    | 1.2%     |  |
|                         | MI    | 10.0%                                 | 10.1%                     | TVMI:2.9%                                  | 0.4%     |  |
|                         | TLR   | 6.1%                                  | 9.3%                      | 7.9%                                       | 3.8%     |  |
|                         | ST    | 1.7%                                  | 1.3%                      | 3.3%                                       | 0.4%     |  |



## **EBC MAIN: Limitations**

- Designed to be superiority trial not non-inferior
- Lower actual observed event rates of 14.7% (1-stent) vs 17.7% (2-stent) compared to assumed primary endpoint rates of 14% vs 25% at 1 year (? type 11 error)
- Non-uniformity in procedures: No POT in abt 15% in both gps, No KBT in PS (11%) even mandated.
  No second stent in 2-stent group (5%)
  Low operator experience in complex LM PCI.
- Only 85% of patients had appropriate cardiac enzyme measurement, which may impact on periprocedural MI rate



### **DK-CRUSH V: Limitations**

Under-powered study

 More complex procedures more time (16 more minutes or 19% more time) than provisional stenting



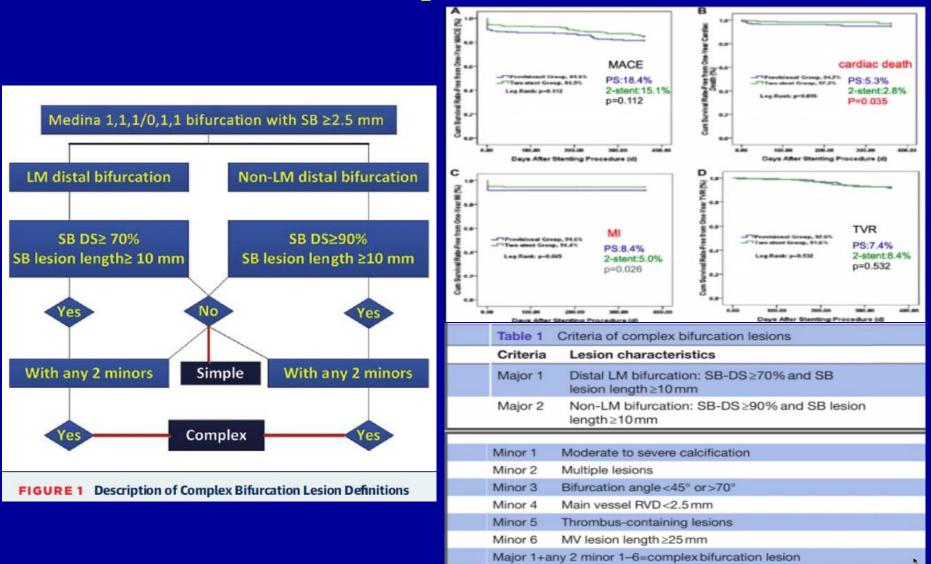
Operators not familiar with ? TAP technique

 More attention paid to techniques in DK group (more POT and KBI)



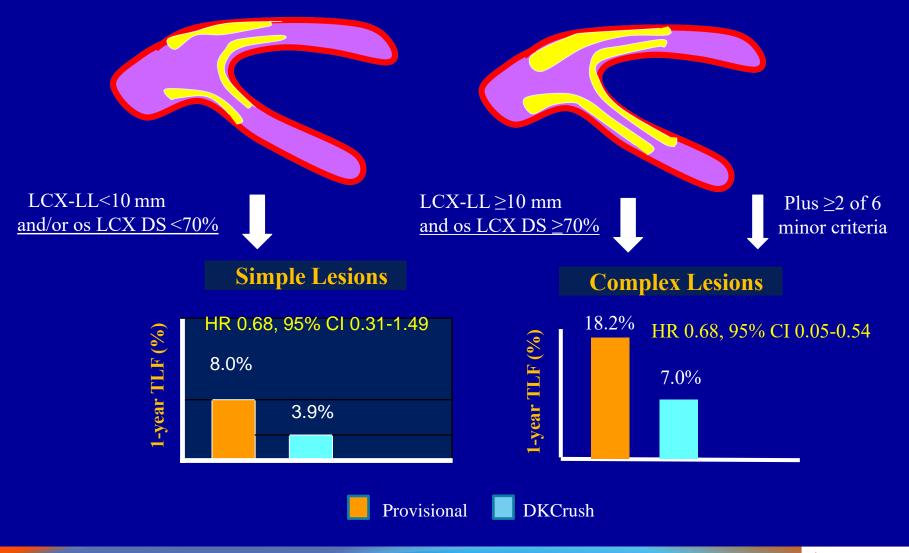
### **Do Lesion Complexity Impact On Outcomes?**




| Early Recommendations of Provisional Stenting Based On Simple Lesions |     |     |              |              |              |        |
|-----------------------------------------------------------------------|-----|-----|--------------|--------------|--------------|--------|
|                                                                       | AMI | СТО | SB-D<br>(mm) | SB-L<br>(mm) | SB-DS<br>(%) | D-Type |
| NORDIC-I                                                              | No  | No  | 2.0          | 5            | 40           | Simple |
| NORDIC-II                                                             | No  | No  | 2.5          | 6            | 42           | Simple |
| NORDIC-III                                                            | No  | No  | 2.5          | 6            | 44           | Simple |
| NORDIC-IV                                                             | No  | No  | 2.75         | 6            | 40           | Simple |
| CACTUS                                                                | No  | No  | 2.5          | 5            | 62           | Simple |
| BBC ONE                                                               | No  | No  | 2.25         | 5            | 40           | Simple |

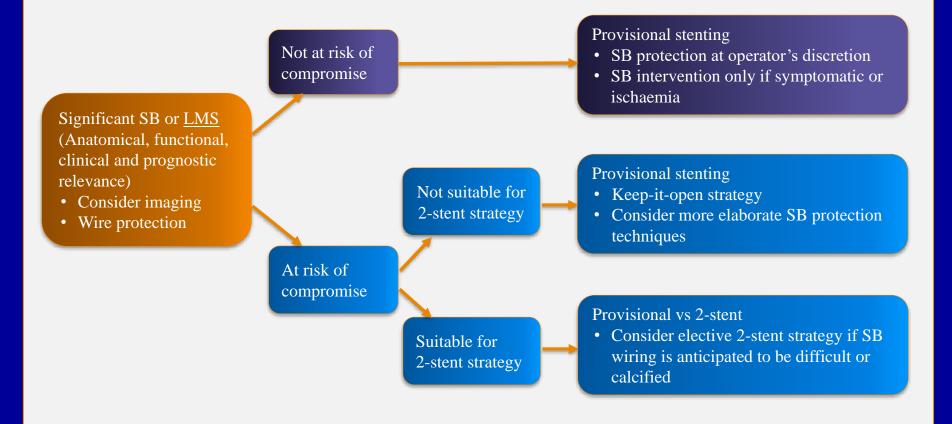
| <b>Recent Recommendations of Provisional Stenting</b> | <b>Based On Com</b> | plex Lesions |
|-------------------------------------------------------|---------------------|--------------|
|-------------------------------------------------------|---------------------|--------------|

|               | AMI | СТО | SB-D<br>(mm) | SB-L<br>(mm) | SB-DS<br>(%) | D-Type  |
|---------------|-----|-----|--------------|--------------|--------------|---------|
| DK-CRUSH-II   | Yes | Yes | 2.5          | 11           | 65           | Complex |
| DK-CRUSH-III  | Yes | Yes | >2.5         | 17           | 64           | Complex |
| DK-CULOTTE-1  | Yes | Yes | >2.5         | 14           | 78           | Complex |
| DK-CRUSH-V    |     |     | LCX          |              |              | UPLMD   |
| DEFINITION-II | Yes | No  | >2.5         | 16           | 77           | Complex |


**Chen Liang Long HaiXi Meeting 2020** 

#### **DEFINITION Study:** 2-Stent Led to Lower Periprocedural MI & Cardiac Death




Chen SL et al J Am Coll Cardiol Intv 2014; 7: 1266-76

### **DK CRUSH V: Target Lesion Failure at 1-Year** Simplex vs Complex Bifurcation Lesions



Chen SL et al J Am Coll Cardiol 2017;70: 2605-2617

## **Asia Pacific Consensus Document On Coronary Bifurcation Interventions**



#### PH Loh et al EuroIntervention 2020; 16:e706-e714 published online

#### Conclusions

- Stent treatment of true bifurcation left main stem coronary artery disease is safe (low ST) and effective
- Provisional vs 2-stent treatment strategy should be individualised according to lesion morphology (including complexity)
- Operator's knowledge, skills and experience/ judgement paramount

