

3D Calcium Image and Guidewire Simulation by CCTA

Masaaki Okutsu, MD, PhD

Department of Cardiovascular Medicine New Tokyo Hospital, Chiba, Japan Department of Cardiology Tokai University Hachioji Hospital, Tokyo, Japan

Disclosure

• The authors have no financial conflicts of interest to disclose concerning the presentation.

Calcified lesion is eternal challenge.

Why do we need to evaluate calcification?

Why do we need to evaluate calcification?

Interventional approach to calcified lesions

Management of Calcific Coronary Artery Lesions

Is it Time to Change Our Interventional Therapeutic Approach?

Giovanni Luigi De Maria, MD, PHD,* Roberto Scarsini, MD,* Adrian P. Banning, MD

Diagnostic Accuracy	Angiography	IVUS	ост
Severe LHCC			
Mild/Moderate LHCC	•		$\bullet \bullet \bullet$
Deep calcium	•	$\bullet \bullet \bullet$	••
Calcium arch	X		
Calcium thickness	X	X	$\bullet \bullet \bullet$
Longitudinal calcium length	X	•	•••
Non-homogeneous plaque / Necrotic core	X	$\bullet \bullet \bullet$	•

De Maria, G.L. et al. J Am Coll Cardiol Intv. 2019;12(15):1465-78.

Management strategies for heavily calcified coronary stenoses: an EAPCI clinical consensus statement in collaboration with the EURO4C-PCR group

Emanuele Barbato ()^{1*}, Emanuele Gallinoro ()², Mohamed Abdel-Wahab ()³, Daniele Andreini ()^{2,4}, Didier Carrié ()⁵, Carlo Di Mario ()⁶, Dariusz Dudek⁷, Javier Escaned ()⁸, Jean Fajadet⁹, Giulio Guagliumi¹⁰, Jonathan Hill¹¹, Margaret McEntegart^{12,13}, Kambis Mashayekhi¹⁴, Nikolasos Mezilis¹⁵, Yoshinobu Onuma^{16,17}, Krzyszstof Reczuch¹⁸, Richard Shlofmitz ()¹⁹, Giulio Stefanini²⁰, Giuseppe Tarantini ()²¹, Gabor G. Toth²², Beatriz Vaquerizo ()²³, William Wijns²⁴, and Flavio L. Ribichini²⁵

Algorithm with intravascular imaging guidance

Why do we need to evaluate calcification?

Rotablator sometimes strike out...

Prediction of the debulking effect of rotational atherectomy using optical frequency domain imaging: a prospective study

Tomoyo Hamana¹ · Hiroyuki Kawamori¹ · Takayoshi Toba¹ · Makoto Nishimori^{1,2} · Kosuke Tanimura¹ · Shunsuke Kakizaki¹ · Koichi Nakamura¹ · Daichi Fujimoto¹ · Satoru Sasaki¹ · Yuto Osumi¹ · Masayoshi Fujii¹ · Seigo Iwane¹ · Tetsuya Yamamoto¹ · Shota Naniwa¹ · Yuki Sakamoto¹ · Yuta Fukuishi¹ · Koshi Matsuhama¹ · Ken-ichi Hirata¹ · Hiromasa Otake¹

B) Wire-based prediction method

(Cardiovasc Interv Ther. 2023 Jul;38(3):316-326)

Post-RA

Corresponding OCT cross-sectional frames

Pre ablation image length between luminal surface of calcified plaque and OCT catheter; (mm)

Post ablation image

The 29th Annual Meeting of the Japanese Association of Cardiovascular Intervention and Therapeutics

Device Bias and efficacy of ablation

Relationship between device bias and ablated calcified plaque area of all cross-sectional frames with co-registration of pre, and post ablation OCT image (n = 574), acquired from 21 patients.

New Tokyo Hospital

(Tanaka K, Okutsu M, et al. CVIT2021)

	Non-invasive imaging prior to the catheterization laboratory		ICA	Intravascular imaging in the catheterization laboratory	
	ССТА	CS		ост	IVUS
Spatial resolution	0.2–0.5 mm	1.25 mm	0.5–0.6 mm	15–20 μ	50–200 μ
Contrast needed	Yes	No	Yes	Yes	No
Time of data acquisition	1–5 min	1 min	15 min ^a	<5–10 s	2–4 min
Availability	+++	+++	+++	+	++
Additional cost	+	+	+	+++	+++
Tissue penetration (non-calcified)	+++	+++	+++	+	++
Global assessment of calcification	+++	+++	+	-	-
Calcium volume quantification	+	-	-	++	-
Calcium arc	++	-	-	+++	+++
Calcium thickness	+	-	-	+++	-
Longitudinal calcium length	+	-	-	+++	+++

CT evaluation correlates well with OCT measurements, however, agreement is not good.

Quantification of calcium burden by coronary CT angiography compared to optical coherence tomography

G. Monizzi^{1,2,3} · J. Sonck^{1,4} · S. Nagumo^{1,5} · D. Buytaert¹ · L. Van Hoe⁶ · L. Grancini² · A. L. Bartorelli^{2,3} · P. Vanhoenacker⁶ · P. Simons⁶ · O. Bladt⁶ · E. Wyffels¹ · B. De Bruyne¹ · D. Andreini^{2,3} · C. Collet¹

Challenges for CCTA to evaluate calcification

- Construction of actual calcification form
- Simulation of guide wire bias

Concept

Welcome to the CT world.

1st challenge: Construction of real calcification figure

³⁰ TCTAP2025

2nd challenge: Guide wire bias simulation program

Accuracy of GW simulation model Ver.2

Total 36 calcified segments of 16 vessels

Correct calcium image 91.6% (33/36)

Contact estimation 88.9% (32/36)

Case

Future challenges

- 1. Precise calcium imaging
- 2. Accuracy of GW bias simulation
- 3. Guide wire bias strength

The goal is almost there.

