Optical Coherence Tomography-Guided or Intravascular Ultrasound-Guided PCI for In-Stent Restenosis Lesions in the OCTIVUS Trial

Kyeong-won Seo, MD

Asan Medical Center,
Ulsan University College of Medicine,
Seoul, Korea.

Disclosure

• I, Kyeongwon Seo DO NOT have any financial relationships to disclose.

- Intracoronary imaging
 - Crucial role in PCI
 - Treatment of complex coronary lesions

Recommendations for Use of Intravascular Imaging
Referenced studies that support the recommendations are
summarized in Online Data Supplement 25.

COR	LOE	Recommendations		
2 a	B-R	 In patients undergoing coronary stent implantation, IVUS can be useful for procedural guidance, particularly in cases of left main or complex coronary artery stenting, to reduce ischemic events.¹⁻¹⁰ 		
2 a	B-R	2. In patients undergoing coronary stent implantation, OCT is a reasonable alternative to IVUS for procedural guidance, except in ostial left main disease. 11-13		
2a	C-LD	In patients with stent failure, IVUS or OCT is reasonable to determine the mechanism of stent failure. 14-17		

Assessment of procedural risks and post-procedural outcomes		
In patients with complex CAD in whom revascularization is being considered, it is recommended to assess procedural risks and post-procedural outcomes to guide shared clinical decision-making.	1	С
Calculation of the STS score is recommended to estimate in-hospital morbidity and 30-day mortality after CABG. 777,862-864	1	В
In patients with multivessel obstructive CAD, calculation of the SYNTAX score is recommended to assess the anatomical complexity of disease. ^{786,865}	1	В
Intracoronary imaging guidance by IVUS or OCT is recommended when performing PCI on anatomically complex lesions, in particular left main stem, true bifurcations, and long lesions. 866,337,810,840,841	1	Α

RENOVATE- COMPLEX- PCI ¹	ULTIMATE ²	IVUS-XPL ³	ILUMIEN IV ⁴	OCTOBER ⁵
IVUS or OCT vs. Angiography	V	US s. graphy	OCT vs. Angiography	OCT vs. Angiography
Complex lesion	De novo	Long lesion > 28mm	DM or Complex lesion	Complex bifurcation
1,639	1,448	1.400	2,487	1,201
TVF	TVF	TVF	TLF	MACE
1 yrs	1 yrs	1 yrs	2 yrs	2 yrs
ICI 7.7% Angio 12.3% HR 0.64, P=0.008	IVUS 2.9% Angio 5.4% HR 0.53, P = 0.019	IVUS 2.9% Angio 5.8% HR 0.48, P=0.007	OCT 7.4% Angio 8.2% HR 0.90, P=0.45	OCT 10.1% Angio 14.1% HR 0.7, P=0.035

Optical Coherence Tomography versus Intravascular Ultrasound **Guided Percutaneous Coronary Intervention OCTIVUS** Trial Patients with CAD undergoing PCI (N=2,000) **OCT-guided PCI** IVUS-guided PCI (N=1,000)(N=1,000)Primary Endpoint: Target Vessel Failure at 1 year (Composite of cardiac death, target-vessel MI and ischemia-driven TVR) Clinical follow-up at 1, 6, 12 months, then 3 and 5 years

- Pathologic mechanisms of ISR are heterogeneous
- Anatomical factors
 - Vessel size
 - Smaller post procedural MLA
 - Severe calcification
- Clinical factors
 - DM, CKD, Older age, female sex, obesity, prev. PCI or CABG
- Stent-related factors
 - Type, drug distribution, drug type, strut thickness
- procedural factors
 - Stent underexpansion, malapposition, gap

- Management of ISR is challenging because of its heterogenous mechanisms and the relatively high rate of recurrence
- Intracoronary imaging modalities (IVUS or OCT) are essential tools to characterize the mechanisms and substrate of ISR

Object

 Comparative data on the efficacy and safety of OCT vs. IVUS in the treatment of ISR are limited.

OCT vs. IVUS in ISR lesion

OCTIVUS trial Subgroup analysis of ISR

Methods

- Primary endpoint
 - Target-vessel failure: cardiac death, target-vessel MI, TVR
- Secondary endpoints
 - Target-lesion failure
 - Death
 - Target-vessel MI, any MI
 - Stent thrombosis
 - Stroke
 - CIN

Methods

Not stratified by ISR at randomization

Adjusted using inverse-probability-of-treatment weighting (IPTW)

Baseline characteristics

Characteristics	OCT (n=86)	IVUS (n=78)	P Value
Age	68.5±9.1	66.9±8.6	0.2581
Female sex	22 (25.6)	17 (21.8)	0.5695
Body-mass index	25.1±2.9	25.1±3.1	0.9086
Diabetes	33 (38.4)	35 (44.9)	0.3988
Insulin treatment	8 (9.3)	5 (6.4)	0.4936
Hypertension	56 (65.1)	54 (69.2)	0.5755
Hyperlipidemia	81 (94.2)	77 (98.7)	0.2135
Current smoker	16 (18.6)	12 (15.4)	0.5842
Family history of premature CAD	7 (8.1)	4 (5.1)	0.4414
Previous myocardial infarction	21 (24.4)	16 (20.5)	0.5501
Previous PCI	85 (98.8)	77 (98.7)	1.0000
Previous CABG	4 (4.7)	5 (6.4)	0.7374
Previous stroke	5 (5.8)	5 (6.4)	1.0000

Baseline characteristics

Characteristics	OCT (n=86)	IVUS (n=78)	P Value
Congestive heart failure	2 (2.3)	1 (1.3)	1.0000
Chronic pulmonary disease	3 (3.5)	2 (2.6)	1.0000
Peripheral vascular disease	2 (2.3)	3 (3.8)	0.6694
Atrial fibrillation	1 (1.2)	1 (1.3)	1.0000
End-stage renal disease on dialysis	3 (3.5)	4 (5.1)	0.7095
LVEF (%)	59.0 <u>±</u> 8.4	59.0±7.9	0.9922
LVEF ≤50%	10/66 (15.2)	12/62 (19.4)	0.5287
Clinical indication for index PCI			0.2047
Silent ischemia	6 (7.0)	1 (1.3)	
Chronic coronary syndrome	58 (67.4)	54 (69.2)	
Acute coronary syndrome	22 (25.6)	23 (29.5)	
Clinical indication for index PCI			0.2870
Silent ischemia	6 (7.0)	1 (1.3)	
Chronic coronary syndrome	58 (67.4)	54 (69.2)	
Unstable angina	12 (14.0)	15 (19.2)	
NSTEMI	10 (11.6)	8 (10.3)	

Anatomical or Lesion characteristics

Characteristics	OCT (n=86)	IVUS (n=78)	<i>P</i> Value
Treated complex coronary lesions			
Left main disease	14 (16.3)	19 (24.4)	0.1974
Any bifurcation disease	44 (51.2)	40 (51.3)	0.9878
Ostial lesion	6 (7.0)	6 (7.7)	0.8605
Chronic total occlusion	13 (15.1)	10 (12.8)	0.6724
Severely calcified lesion	4 (4.7)	5 (6.4)	0.7374
Diffuse long coronary lesions	42 (48.8)	37 (47.4)	0.8577
Multivessel PCI at index procedure	65 (75.6)	57 (73.1)	0.7136
Mean SYNTAX score	16.5±8.7	18.3±8.8	0.2083

Procedural characteristics

Characteristics	OCT (n=86)	IVUS (n=78)	<i>P</i> Value
PCI modality			0.9842
Use of drug-eluting stent	55 (64.0)	50 (64.1)	
Used of drug-coated balloon	31 (36.0)	28 (35.9)	
Total amount of contrast dye used — mL	249.4 <u>+</u> 128.1	208.1 <u>±</u> 104.1	0.0256
Total PCI time — min	52.7±25.0	64.0 <u>±</u> 33.4	0.0162
Procedural success			
Angiography-based	83 (96.5)	75 (96.2)	1.0000
Imaging-based	25 (29.4)	26 (35.1)	0.4406
Procedural complications requiring active intervention			
Any	1 (1.2)	4 (5.1)	0.1921
IVUS or OCT procedure-related complications	0 (0.0)	0 (0.0)	

Previous stent characteristics

Characteristics	OCT (n=95)	IVUS (n=98)	P Value
Previous stent type – n (%)			0.6
BMS	9 (12.0)	9 (12.0)	
Early generation DES	18 (24.0)	28 (26.0)	
Current generation DES	49 (64.0)	43 (59.0)	
BVS	0 (0.0)	2 (2.7)	
Unknown	19	25	
Previous stent size	3.1 ± 0.5	3.2 ± 0.4	0.6
Previous stent length	32.6 ± 23.3	35.4 ± 21.6	
Recurrent ISR	28 (32.0)	26(28.0)	0.6

Clinical outcomes (Crude)

Characteristics	OCT (n=86)	IVUS (n=78)	HR (95% CI)	P Value
Primary end point				
Target-vessel failure	9 (10.5)	23 (29.5)	0.34 (0.16-0.74)	0.0066
Secondary end points				
Target-lesion failure	9 (10.5)	23 (29.5)	0.34 (0.16-0.74)	0.0066
Death				
From any causes	1 (1.2)	2 (2.6)	0.60 (0.05-6.86)	0.6846
From cardiac causes	0 (0.0)	1 (1.3)	NE	-
Target-vessel MI	1 (1.2)	7 (9.0)	0.13 (0.02-1.06)	0.0572
Any MI	1 (1.2)	2 (2.6)	0.45 (0.04-5.00)	0.5185
Stent thrombosis	0 (0.0)	2 (2.6)	NE	-
Stroke	2 (2.3)	2 (2.6)	0.92 (0.13-6.56)	0.9366
Any revascularization	12 (14.0)	20 (25.6)	0.54 (0.26-1.11)	0.0929
Target-lesion revascularization	8 (9.3)	19 (24.4)	0.36 (0.16-0.83)	0.0165
Target-vessel revascularization	8 (9.3)	19 (24.4)	0.36 (0.16-0.83)	0.0165
Bleeding event (BARC type 3-5)	0 (0.0)	4 (5.1)	NE	-
CIN	2 (2.3)	3 (3.8)	0.60 (0.10-3.52)	0.5759

Clinical outcomes (IPTW)

Characteristics	OCT (n=86)	IVUS (n=78)	HR (95% CI)	P Value
Primary end point				
Target-vessel failure	16 (9.6)	47 (29.0)	0.31 (0.14-0.69)	0.0039
Secondary end points				
Target-lesion failure	16 (9.6)	47 (29.0)	0.31 (0.14-0.69)	0.0039
Death				
From any causes	2 (1.0)	4 (2.5)	0.51 (0.04-5.94)	0.5914
From cardiac causes	0 (0.0)	2 (1.3)	NE	-
Target-vessel MI	2 (1.2)	16 (10.1)	0.11 (0.01-0.94)	0.0434
Any MI	2 (1.2)	4 (2.6)	0.44 (0.04-4.73)	0.495
Stent thrombosis	0 (0.0)	4 (2.6)	NE	-
Stroke	4 (2.4)	4 (2.3)	1.06 (0.15-7.71)	0.9540
Any revascularization	21 (12.7)	38 (23.3)	0.52 (0.25-1.10)	0.0867
Target-lesion revascularization	14 (8.5)	36 (22.2)	0.35 (0.15-0.83)	0.0171
Target-vessel revascularization	14 (8.5)	36 (22.2)	0.35 (0.15-0.83)	0.0171
Bleeding event (BARC type 3-5)	0 (0.0)	8 (4.8)	NE	-
CIN	5 (2.9)	6 (3.6)	0.81 (0.13-4.92)	0.8155

^{*} Adjustment using IPTW, variables are Age, BMI, hypertension, DM, prior MI, prior PCI

Kaplan-Meier Curve

Primary outcome; TVF

Kaplan-Meier Curve

After IPTW

Discussions

- Treatment of ISR lesion requires detailed evaluation of stent struts, lumen area and neointimal patterns
- Given Higher resolution, ability to delineate the composition of different plaque morphologies, OCT is superior to IVUS in assessing stent failure
 - identify stent underexpansion or malapposition
 - accurately detect thrombus
 - categorize the composition of the neointima or neoatherosclerosis
- Identifying the etiology of ISR has important implications for optimizing treatment and improving outcomes.

Summarize

- Despite the continuous advancement of DES technology, ISR remains a persistent clinical issue
- Because the mechanisms underlying ISR are heterogeneous, treatment should be tailored according to the specific characteristics of each lesion
- intracoronary imaging (ICI) plays a critical role in identifying the underlying pathology of ISR.
- In our study, OCT-guided PCI demonstrated superior clinical outcomes compared to IVUS-guided
 PCI
- Given Higher resolution, ability to delineate the composition of different plaque morphologies, OCT is superior to IVUS in assessing stent failure

Conclusion

• In ISR lesions, **OCT-guided PCI showed a significant reduction** in the primary-composite event of death from cardiac causes, target-vessel-related MI, or target-vessel revascularization as compared with IVUS-guided PCI

Thank you for your attention

