

Is IL-6 a Possible Target to Prevent Post-AMI Cardiovascular Events?

Davide Capodanno MD, PhD, FESC

April 25, 2025

Financial disclosures

Within the past 12 months, with respect to the content of this presentation, I, **Davide Capodanno**, have had a financial interest/arrangement or affiliation with the organization(s) listed below:

Advisory Board fees

Bristol-Myers Squibb, Daiichi Sankyo

Lecture Fees

• Novo Nordisk, Sanofi, Terumo

RESIDUAL CARDIOVASCULAR RISK

Università di Catania

Adapted from Lawler PR, et al. Eur Heart J. 2021;42:113-131

Deposition of oxidized LDL and cholesterol in the vessel wall

Post-AMI cell debris and metabolites, ischemia and reperfusion injury

Inflammatory Pathway

Anti-inflammatory drugs Colchicine

COLCOT TRIAL

di Catania

Tardif JC, et al. N Engl J Med 2019;381:2497-2505

COLCOT TRIAL

Serious Adverse Events at ~23 Months

	Colchicine (N=2330)	Placebo (N=2346)
Any serious adverse events	383 (16.4%)	404 (17.2%)
Gastrointestinal event	46 (2.0%)	36 (1.5%)
Infection	51 (2.2%)	38 (1.6%)
Pneumonia	21 (0.9%)	9 (0.4%)
Septic shock	2 (0.1%)	2 (0.1%)
Hospitalization for heart failure	25 (1.1%)	21 (0.7%)
Cancer	43 (1.8%)	46 (2.0%)

Tardif JC, et al. N Engl J Med 2019;381:2497-2505

TRIALS AND GUIDELINES RECOMMENDATIONS

CLEAR TRIAL

Major Adverse Cardiac Events

7062 patients who had a MI at Median 3 Years Hazard ratio, 0.99 (95% CI 0.85-1.6; P=0.93 for superiority)

Serious Adverse Events at ~36 Months

	Colchicine (N=3528)	Placebo (N=3534)
Noncardiovascular death	45 (1.3%)	66 (1.9%)
Death from all causes	162 (4.6%)	179 (5.1%)
Pericarditis	91 (2.6%)	89 (2.5%)
Serious adverse GI event	35 (1.0%)	33 (0.9%)
Serious adverse hematologic event	0 (0%)	8 (0.2%)
Serious infection	87 (2.5%)	101 (2.9%)
Diarrhea	361 (10.2%)	233 (6.6%)

Jolly SS, et al. N Engl J Med 2025;392:633-642

	Colchicine Events / PY	No Colchicine Events / PY
Deftereos et al.	0 (0)	0 (0)
COLIN	0 (0)	0 (0)
COLCOT	111 (8281)	130 (8327)
LoDoCo-MI	0 (9)	2 (9)
LoDoCo2	115 (6583)	157 (6578)
Australian COPS	24 (429)	41 (432)
Akrami et al.	8 (60)	28 (65)
PODCAST-PCI	15 (161)	18 (160)
COVERT-MI	36 (101)	40 (91)
CLEAR	241 (10584)	250 (10602)
Pooled effect		

10 Trials, 19304 patients with MI Mean follow-up 11±15 months

Laudani C, Capodanno D, et al. Eur Heart J Cardiovasc Pharmacother [ePub ahead of print]

Targeting IL-1 Canakinumab

MACE at Median 3.7 Years

10061 patients with previous myocardial infarction and a highsensitivity C-reactive protein level of 2 mg or more per liter

Ridker PM, et al. N Engl J Med 2017;377:1119-1131

Annualized Incidence of Serious Adverse Events

	Canakinumab (N=6717)	Placebo (N=3344)
Any serious adverse events	2389 (11.8%)	1202 (12.0%)
Fatal cancer	115 (0.5%)	81 (0.6%)
Fatal infection or sepsis	78 (0.3%)	23 (0.2%)
Arthritis	545 (2.3%)	385 (3.3%)
Leukopenia	100 (0.4%)	30 (0.2%)
Thrombocytopenia	150 (0.6%)	53 (0.4%)

Ridker PM, et al. N Engl J Med 2017;377:1119-1131

Major Adverse Cardiovascular Events

According to the achievement of on-treatment interleukin-6 levels above or below the trial median of 1.65 mg/L at 3 months among those allocated to canakinumab

P < 0.0001 for interaction

Hazard ratio (95% CI)

 Placebo
 Reference

 Canakinumab, IL-6 ≥ median value (1.65 mg/L)
 HR, 1.06; 95% CI, 0.90-1.25

 Canakinumab, IL-6 < median value (1.65 mg/L)</td>
 HR, 0.64; 95% CI, 0.54-0.77

Ridker PM, et al. N Engl J Med 2017;377:1119-1131

Targeting IL-6 Ziltivekimab

Ziltivekimab (monoclonal antibody)

A human monoclonal antibody directed against the IL-6 ligand

+ IL-6 signaling pathway

IL-6 ligand

Given once monthly as a subcutaneous injection

Ziltivekimab (monoclonal antibody)

↓ IL-6 signaling pathway

IL-6 ligand

ARTEMIS TRIAL

10000 Participants

• AMI (STEMI or NSTEMI)

- Angiographic evidence of type 1 MI
- ≥1 enrichment criteria
- Randomization as early as possible and latest within 36 h from STEMI or 48 h from NSTEMI

Study objective

To demonstrate the superiority of a loading dose of ziltivekimab 30 mg s.c. versus placebo s.c. followed by 15 mg s.c. once monthly vs placebo s.c. both added to SOC, in reducing the risk of MACE in participants with angiographic evidence type 1 MI.

Primary endpoint

Time to first occurrence of 3-point MACE

- CV death
- Non-fatal MI
- Non-fatal stroke

Confirmatory secondary endpoints (hierarchy)

Time to first occurrence of

- Coronary MACE (CV-death, non-fatal MI, ischemia-driven coronary revascularization)
- Expanded MACE (CV death, non-fatal MI, non-fatal stroke, ID-CR, HFH, urgent HF)
- Expanded HF (CV death, HFH, urgent HF, or outpatient HF visit)
- All-cause death

CLOSING REMARKS

- Low-dose colchicine is class IIa in the CCS guidelines and class IIb in the ACS guidelines, but recently failed to show benefit in a large trial of patients with AMI.
- I still consider colchicine in the infrequent CCS-PCI "frequent flyer" patients who meet the LDL-C targets but remain with high hs-CRP.
- The divergent results of the trials of canakinumab and colchicine highlight the need for large trials that target different parts of the inflammatory pathway.
- Trials are in planning or underway evaluating interleukin-6 inhibition in several clinical settings.

X: @DFCapodanno