Catheter-Based Denervation for Resistant Hypertension Therapeutic Options for Those Previously Without Alternative

David E. Kandzari, MD, FACC, FSCAI

Chief Scientific Officer Director, Interventional Cardiology

Piedmont Heart Institute Atlanta, Georgia david.kandzari@piedmont.org

Disclosure

Within the past 12 months, I or my spouse/partner have had afinancial interest/arrangement or affiliation with the organization(s)listed belowAffiliation/Financial RelationshipCompany

Grant/Research Support	Abbott Vascular,Boston Scientific Corporation, Medtronic CardioVascular
Consulting Fees/Honoraria	Abbott Vascular, Boston Scientific Corporation, Medtronic CardioVascular, Micell Technologies, Terumo Medical
Major Stock Shareholder/Equity	None
Royalty Income	None
Ownership/Founder	None
Intellectual Property Rights	None
Other Financial Benefit	None

Renal Sympathetic Efferent Nerve Activity Kidney as Recipient of Sympathetic Signals

Renal Sympathetic Afferent Nerves

Kidney as Origin of Central Sympathetic Drive

Renal Nerves as a Therapeutic Target

Renal Nerves as a Therapeutic Target

Symplicity[®] Catheter System[™]

- 6F catheter access
- Articulating tip with RF electrode

- Renal nerves lie in adventitia, encircling the renal arteries
- 4-6 focal 2-minute RF treatments along each renal artery

Proof of Principle: Therapeutic Renal Denervation and Reduction of Central Sympathetic Nerve Activity

The Symplicity HTN Clinical Trial Program

Enrollment period for HTN-3 is estimated.

1. Krum H, et al. Lancet. 2009;373:1275-1281.

2. Symplicity HTN-1 Investigators. *Hypertension*. 2011;57:911-917.

3. Esler et al. Lancet. 2010;376:1903-1909.

4. Data on file, Medtronic.

SYMPLICITY I and Expanded Cohort

Baseline Patient Characteristics

		N=153
Demographics	Age (years)	57 ± 11
	Gender (% female)	39%
	Race (% non-Caucasian)	5%
Co-morbidities	Diabetes Mellitus II (%)	32%
	CAD (%)	24%
	Hyperlipidemia (%)	72%
	eGFR (mL/min/1.73m ²)	81 ± 19
Blood Pressure	Baseline BP (mmHg)	176/98 ± 17/15
	Number of anti-HTN meds (mean)	5.0 ± 1.4
	ACE/ARB (%)	88%
	Beta-blocker (%)	79%
	Calcium channel blocker (%)	72%
	Vasodilator (%)	19%
	Diuretic (%)	96%
	Spironolactone (%)	24%

SYMPLICITY HTN-1 Procedural Safety

- 38 minute median procedure time
 - Average of 4 ablations per artery
- Intravenous narcotics & sedatives used to manage pain during delivery of RF energy
- No catheter or generator malfunctions
- No major complications
- Minor complications 4/153:
 - 1 renal artery dissection during catheter delivery (prior to RF energy), no sequelae
 - 3 access site complications, treated without further sequelae

baseline right kidney

acute post treatment right

30 day post treatment right

baseline left kidney

acute post treatment left

30 day post treatment left

SYMPLICITY HTN 1 Change in Office Blood Pressure Through 36 Months

SYMPLICITY HTN-1 Late-Term Safety (3 Years)

- No RF treatment related vascular complications
 - One progression of a pre-existing renal artery stenosis (40%→80%), possibly related to catheter manipulation, successfully stented
 - One new moderate stenosis which was not hemodynamically relevant and no treatment
- 3 deaths within the follow-up period; all unrelated to the device or therapy
- No hypotensive events that required hospitalization
- No orthostatic hypotension
- No electrolyte disturbances
- There was no significant change in mean electrolytes or eGFR

Primary Endpoint 6-Month Office Blood Pressure

- 84% of RDN patients had ≥ 10 mmHg reduction in SBP
- 10% of RDN patients had no reduction in SBP

Change in Office Blood Pressure (mm Hg)

Distribution of Office SBP for RDN Group

Distribution of Office SBP For Crossover Group

SYMPLICITY HTN-2

Renal Function in RDN and Crossover Groups

RDN N=47	Treated at Randomizati	on	
	Baseline	6 month	12 months
eGFR (ml/min/1.73m ²)	76.9 ±19.3 (n= 49)	77.1±18.8 (n=49)	78.2±17.4 (n=45)
Cystatin C (mg/L)	0.91±0.25 (n=38)	0.98±0.36 (n=40)	0.98±0.30 (n=38)
•	Treated after 6-mo Follow-up ↓		
Crossover N=35		6-то го	
Crossover N=35	Baseline	6 month	12 months
Crossover N=35 eGFR (ml/min/1.73m ²)	Baseline 88.8 ± 20.7 (n = 35)	6 month 89.3±19.5 (n = 35)	12 months 85.2±18.3 (n = 35)

Medication Changes at 6 and 12 Months Post-Renal Denervation

RDN (n=47)	6 month	12 months
Decrease (# Meds or Dose)	20.9% (9/43)	27.9% (12/43)
Increase (# Meds or Dose)	11.6% (5/43)	18.6% (8/43)

Crossover (n=35)	6 months post-RDN
Decrease (# Meds or Dose)	18.2% (6/33)
Increase (# Meds or Dose)	15.2% (5/33)

Physicians were allowed to make changes to medications once the 6 month primary endpoint was reached*

- Prospective, multi-center, global registry
- Minimum 5,000 pts
- Evaluate safety in 'real world' population of patients treated with RDN using the Symplicity[®] Renal Denervation System[™]
- Attention to treatment-resistant hypertension, heart failure, insulin resistance, chronic kidney disease, and sleep apnea

Future Directions for Research

- Chronic activation of renal nerves is common in multiple conditions/disease states^{1,2}
- Future research may be warranted in disease states characterized by hyperactive afferent and efferent renal nerves

RAAS = renin-angiotensin-aldosterone system.

1. Adapted from Schlaich MP, et al. *Hypertension*. 2009;54:1195-1201.

2. Blankestijn PJ, et al. Nephrol Dial Transplant. 2011;26:2732-2734.

TI PIEDMONT HEART III INSTITUTE

Pilot Study in Heart Failure with Reduced LVEF

- 40 patients at up to 5 international centers
- Inclusion Criteria:
 - Heart Failure patients NYHA Class II or III
 - Renal Impairment Left Ventricular Ejection Function <40%
 - GFR 30 to 75 mL/min/1.73m2
 - Optimal stable medical therapy
- Exclusion Criteria:
 - Renal artery anatomy must be eligible for treatment as determined by Angiography, and
 - History of prior renal artery intervention
 - Single functioning kidney.
 - Myocardial Infarction, unstable angina pectoris or cerebrovascular Accident within 3 months
 - Systolic BP <110mmHg

Improvement in Glucose Metabolism

Changes in Glucose Metabolism with Renal Denervation

Influence of Renal Denervation on Regression of LVH and Improvement of Diastolic Function

Regression of LVH and Improvement of Diastolic Function Relative to BP Reduction Achieved by Renal Denervation

Blood Pressure Variation and Obstructive Sleep Apnea

Catheter-Based Renal Denervation Opportunities for Disease Management

- RDN for resistant HTN is associated with
 - Significant and durable reductions in blood pressure
 - Procedural and intermediate-term safety
 - Preservation of electrolyte and hemodynamic homeostasis
- Ongoing evaluation in both RCT and observational studies may confirm and expand upon RDN effectiveness in both selected and broader patient populations
- Evolving applications in disease conditions related to hypersympathetic activity may expand therapeutic opportunities

