Future Perspectives of Cardiac MRI

Joon-Won KANG, MD (jwonkang@amc.seoul.kr) Department of Radiology, Asan Medical Center, Seoul, Korea

Coronary MRI

• Advantages

- No radiation
- No iodinated contrast media
- "Established" perfusion and viability
- Disadvantages (technical challenges)
 - Motion
 - Scanning times
 - Spatial resolution

Increased resolution using 3-T and contrast media using

• High-field MR imaging

• 3-T MRI has higher CNR than 1.5-T MRI

Segments	CNR _{COR-MYO}				
	1.5 T (SSFP)	3 T (CE FLASH)	Р		
LMS	29.6 ± 18.9	43.5 ± 20.8	0.05		
LAD _{prox}	28.6 ± 17.1	45.0 ± 24.6	0.01		
LCX _{prox}	23.5 ± 16.1	36.6 ± 21.5	0.05		
RCAprox	23.5 ± 18.7	30.4 ± 19.6	0.22		
Overall	26.3 ± 15.4	38.9 ± 19.6	0.03		

Decrease artifact: respiratory motion correction

Table 1

Quantitative comparison between the three techniques.

	No respiratory		Navigator gating and	P value (n = 9)		
Parameter	gating with proposed motion correction (MC)	No respiratory gating with no motion correction (noMC)	slice tracking with ± 3mm acceptance window (NGS)	MC versus NGS	NGS versus noMC	noMC versus MC
Imaging time (min)	6.8 ± 0.9	6.8 ± 0.9	16.2 ± 2.8	<0.001	<0.001	-
Navigator efficiency (%)	100.0 ± 0.0	100.0 ± 0.0	43.44 ± 11.5	-	-	-
Image quality score	3.25 ± 0.32	1.87 ± 0.46	3.36 ± 0.40	0.084	<0.001	<0.001
RCA sharpness (mm ⁻¹)	0.84 ± 0.07	0.68 ± 0.13	0.81 ± 0.10	0.238	0.003	0.002
RCA diameter (mm)	3.31 ± 0.46	3.61 ± 0.60	3.36 ± 0.39	0.703	0.157	0.201
RCA length (cm)	11.63 ± 2.18	9.08 ± 2.84	12.11 ± 1.82	0.256	0.004	<0.001
LAD sharpness (mm ⁻¹)	0.83 ± 0.09	0.61 ± 0.07	0.84 ± 0.12	0.677	0.001	0.001
LAD diameter (mm)	3.23 ± 0.74	3.54 ± 0.95	3.28 ± 0.76	0.782	0.355	0.344
LAD length (cm)	9.16 ± 1.17	5.46 ± 2.57	9.13 ± 1.12	0.908	0.006	0.003
LCX sharpness (mm ⁻¹)	0.92 ± 0.06	0.65 ± 0.14	0.90 ± 0.08	0.667	0.031	0.009
LCX diameter (mm)	2.80 ± 0.49	3.28 ± 0.19	2.90 ± 0.44	0.338	0.051	0.050
LCX length (cm)	6.32 ± 1.31	2.07 ± 1.57	6.13 ± 1.10	0.372	0.001	0.002

Figure 1 Reformatted image without correction (left), with navigator binning (middle), and with SEGMO (right).

Bhat et al. MRM 2011;65:1269 Pang et al. SCMR 2012

Optimization of parameters using high field MR

- \downarrow Acquisition window is more effective than \uparrow spatial resolution.
- Double oblique whole-heart MRA is better.
- 3T: smaller voxel size than 1.5T

- Myocardial tagging segmented k-space spoiled gradient echo pulse sequences with a spatial modulation of the magnetization (SPAMM) and complementary SPAMM (CSPAMM)
 - SPAMM
 - Usually fade in the early diastole (app 400-500 ms)
 - CSPAMM
 - Improved tag persistence
 - Used both systole and diastole
 - Disadvantages
 - double acquisition time and scan time: misregistration

• Myocardial tagging using EPI CSPAMM

• Image acquisition in one-breath hold

	70	-105	
sm cc=1	t=/0 ms	2m c01=1	t=140 ms
t=175 ms	t=210ms	τ=245 ms	t=280 ms
t=315 ms	t=350 ms	t=385 ms	t=420ms
• 1=455 ms	t=490ms	t=525 ms	t=560 ms
t=595 ms	t=630 ms	t=665 ms	t=700 ms

• New approaches

- Inherent tissue tracking rather than tagging.
 - Harmonic phase imaging (HARP)
 - Strain-encoded (SENC) MR
 - Displacement encoding with simulated echoes (DENSE)
- Encode tissue displacement (HARP and DENSE)
- Directly encode strain (SENC)

• SENC

- Direct encoding of regional strain of the heart into the acquired image.
- Measure the strain in the direction orthogonal to the image plane.
- In case of short-axis images, only the longitudinal compression of the myocardium from base to apex is measured. On the other hand, circumferential shortening of the myocardium can be measured in the long-axis views of the heart (such as the fourchamber view).

Flow quantification

- 2D Velocity encoded cine (VENC) MR
 - Most widely used.
- Newer sequences of VENC MR
 - Resolution of velocity vector in 3D
 - Spatial coverage of 3D volume
 - Temporally resolved throughout cardiac cycle
 - \rightarrow Complete spatial and temporal resolution of velcoity
 - \rightarrow Higher SNR
 - Flow patterns of the heart, great vessels.
 - More accurate information of velocity.

PC images for x-,y-,and z-axis veloci ty

Patterns of aorta flow

Markl et al. JMRI 2003

Westenberg et al. Radiology 2008

Myocardial scar (DE-MRI)

- 2D-IR spoiled gradient echo
- Real-time acquisition without breath hold (IR-SSFP)
 - Advantage : less than 30s scan
 - For acutely ill, cannot hold one's breath
 - Arrhythmia
 - Disadvantage
 - Lower spatial resolution
 - Less T1 weighting
 - Reduced CNR: mildly decreased sensitivity and underestimation of transmural extent

Discordant Hyperenhancement Patterns

Patient example 6: acute MI with "no-reflow"

Sievers et al. Circulation 2007

Myocardial scar (DE-MRI)

• Quantification of scar

- Using standard deviation
 - SI more than 2 (m.c) or more st-dev than normal

Attili et al. Int J CV Imaging 2010

Results

Results

Base SP: 30.86 Apex SP: 78.86

Percent Hyper-Intense

Myocardial scar (DE-MRI)

• Quantification of scar

Full-width-half-maximum model

 Much less sensitive to variations in image acquisition parameters

full-width at half-maximum (FWHM) criterion—an initial region is determined to grow to include all pixels with signal intensity (SI) >50% of a user selected point. The maximum signal intensity (MX) inside this initial region is then determined, and the final MI extent is defined as the area presenting with a signal intensity 50% above the maximum of the initial region (MI = MX * 0.5).

Myocardial scar (DE-MRI)

• Quantification of scar

• Fully automated technique to obtain accurate assessment of the size of MI.

Vessel wall and plaque imaging (I)

- Vessel wall thickness ↑
 - : CAD and aging
- Wall enhancement
- High intensity plaque

40yr

24yr

59yr

Kim, WY. et al. Circulation 2002;106:296-299

Vessel wall and plaque imaging (II)

Using Black blood technique

- Vessel wall thickness ↑
- Wall enhancement: 1 enhancement in CAD segments
- High intensity plaque

Yeon, SB. et al. J Am Coll Cardiol 2007;50:441-447

AMC case

Vessel wall and plaque imaging (III)

- Vessel wall thickness ↑
- Wall enhancement
- High intensity plaque α positive remodeling, ultrasound attenuation, spotty calcification in the IVUS.

	HIP (n = 18)	Non-HIP (n = 7)	p Value
PMR	1.70 ± 0.71	0.90 ± 0.08	0.008
MSCT			
Positive remodeling, yes/no	16/2	0/7	< 0.000
RI	1.19 ± 0.08	0.98 ± 0.05	< 0.000
Minimal CT density, HU	-23.2 ± 20.7	9.6 ± 20.5	0.001
Spotty calcification, yes/no	16/2	3/3*	0.079
VUS			
Positive remodeling, yes/no	17/1	1/6	< 0.001
RI	1.15 ± 0.07	0.89 ± 0.11	< 0.000
Ultrasound attenuation, yes/no	18/0	1/6	< 0.000
Slow flow phenomenon, yes/no	15/3	1/6	0.003

Kawasaki et al. J Am Coll Cardiol CV Imaging 2009

Vessel wall and plaque imaging (IV)

• Phase sensitive BB- imaging using 3-T: better CNR

Khaled et al. MRM 2010;63:1021-1030

Molecular targeted MRI

• Targeted agents

- Specific plaque components
- \rightarrow Fibrin in thrombi: EP-2104R
- →Macrophage: SPIO

Spuentrup, Botnar, et al. Eur Radiol 2009;18:1995

Specific contrast media

- Gadofluorine (Circ Imaging, 2009)
 - GdF was uptaken RAM-11(macrophages) and CD-31 (endothelial cells) 24 hour after administration.
 - GdF accumulates in highly inflamed, lipid-rich cores.

Plaque imaging using SPIO

• Decrease USPIO uptake after statin use (Tang, JACC 2009)

Conclusions

• Perspectives of MR coronary imaging

- Development of fast acquisition
- Reducing motion
- Quantification methods
- Plaque imaging, molecular imaging, tissue charaterization