Angiographic Assessment of Bifurcation Lesions

Young-Hak Kim, MD, PhD

Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

 Nothing to disclose related with this presentation

CVRF Clinical Trial Center

President

Business Department (Budget, Billing, Contracts)

Independent Angiographic And IVUS Analysis

IVUS/QCA Core Lab

nent

CardioVascular Research Foundation

СТА

(Clinical Trial Assistant)

Bifurcation Angiographic Analysis

Qualitative assessment

Quantitative assessment

Bifurcation Angiographic Analysis

Qualitative assessment

Quantitative assessment

Qualitative Assessment

- General morphology of MB or SB
 - Calcification
 - TIMI grade flow
 - Tortuosity
 - Calcification
 - Restenosis
 - Restenosis pattern
- Bifurcation classification: MEDINA class
- Bifurcation angle
- etc

🖰 Login

Home Tutorial Calculator References Contact

SYNTAX SCORE

⁹ Welcome to the SYNTAX Score website. The SYNTAX Score is a unique tool to score complexity of coronary artery
⁷ disease. However, it is very important to use this new scoring tool correctly, hence, it is strongly recommended to complete the tutorial first.

TUTORIAL

Knowledge of definitions is vital. Please use the tutorial prior to first calculator use.

Search ...

CALCULATOR Start using the calculator when you have successfully completed the tutorial.

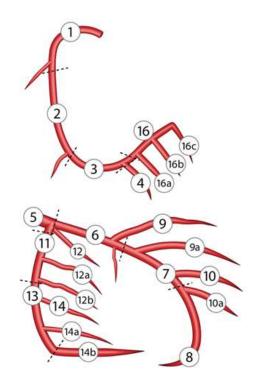
ou Start calculator...

SYNTAX Trial: Two-year outcomes

eì

Pieter Kappetein, MD, PhD presented the two-year results of the SYNTAX trial at the European Society of Cardiology Meeting, Barcelona on September 2nd, 2009. SYNTAX was featured in a Clinical Trial webcast. Key findings included:

- In the SYNTAX randomized patients, 2-year MACCE rates remained significantly higher for PCI than CABG, mainly driven by higher repeat revascularization in the PCI arm.
- AACCE rates at 2 years not significantly different for patients with a low (0-22) or intermediate (23-32) baseline SYNTAX Score treated with either PCI or CABG; for patients with high SYNTAX Scores (≥33), MACCE continued to be increased at 2 years in patients treated with PCI compared with CABG
- ➡ In the predefined subgroups of patients with either 3VD or LM disease:
 - In the LM group, safety outcomes and MACCE rates were similar for PCI and CABG, but the 2-year revascularization rate was lower in the CABG group.
 - Safety outcomes (death/CVA/MI) in the 3VD group were similar for PCI and CABG, but the 2-year revascularization and MACCE rates favored CABG.


The full presentation can be viewed or downloaded here:

8

Current lesion: 1/1

ORE

SYNTA Dominance: right - 7 🛛

3. Specify which segments are diseased for <u>lesion 1</u>. (i) Click on the coronary tree image to select or unselect segments.

		Lesion:	1
	Segments:		
RCA	RCA proximal	1	
	RCA mid	2	
	RCA distal	3	
	Posterior descending	4	
	Posterolateral from RCA	16	
	Posterolateral from RCA	16a	
	Posterolateral from RCA	16b	
	Posterolateral from RCA	16c	
LM	Left main	5	
LAD	LAD proximal	6	
	LAD mid	7	
	LAD apical	8	
	First diagonal	9	
	Add. first diagonal	9a	
	Second diagonal	10	
	Add. second diagonal	10a	
LCX	Proximal circumflex	11	
	Intermediate/anterolateral	12	
	Obtuse marginal	12a	
	Obtuse marginal	12b	
	Distal circumflex	13	
	Left posterolateral	14	
	Left posterolateral	14a	
	Left posterolateral	14b	

Click here for segment definitions

Bifurcation

≥ **1.5 mm**

A bifurcation is a division of a main, parent, branch into two daughter branches of at least 1.5mm. Bifurcation lesions may involve the proximal main vessel, the distal main vessel and the side branch according to the Medina classification. The smaller of the two daughter branches should be designated as the 'side branch'. In case of the main stem either the LCX or the LAD can be designated as the side branch depending on their respective calibres. Bifurcations are only scored for the following segment junctions: 5/6/11, 6/7/9, 7/8/10, 11/13/12a, 13/14/14a, 3/4/16 and 13/14/15.

'Specify which segments are diseased for lesion X': one should fill out only those segment numbers of the bifurcation that have a Diameter Stenosis 250% in direct contact with the bifurcation.

≥ 50% stenosis

Example 1

SB = small daughter branch

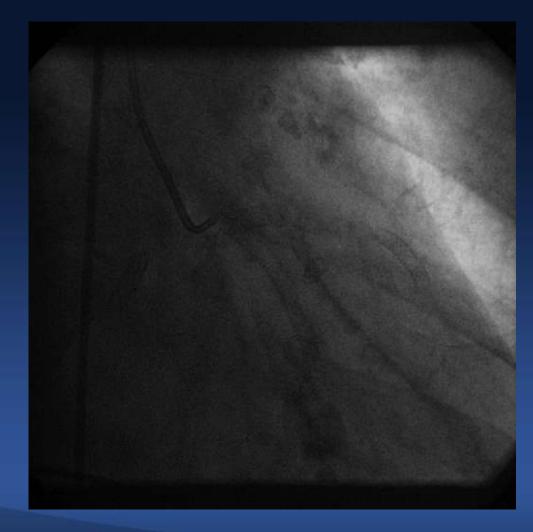
- One lesion
- one segment number involved/diseased (= segment: 7).
- Bifurcation 'Yes'
- Medina class: 0, 1, 0

TIMI Flow

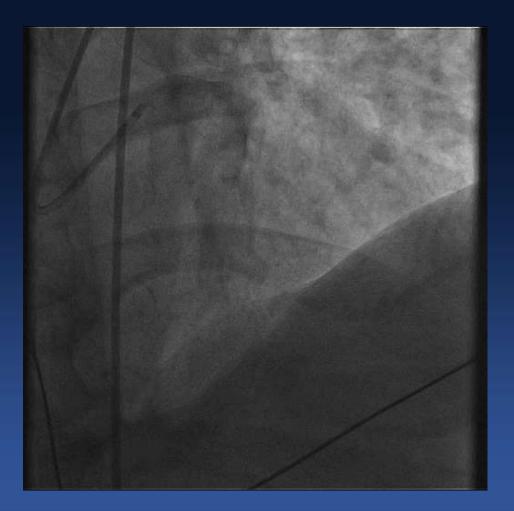
Grade 0 No flow beyond the point of occlusion (total occlusion).

Grade 1 Contrast passes the point of obstruction but only trickles distal.

Grade 2 Contrast opacifies the entire coronary bed distal to the stenosis with complete filling of the artery and it's major and minor branches after more than 3 full cardiac cycles.

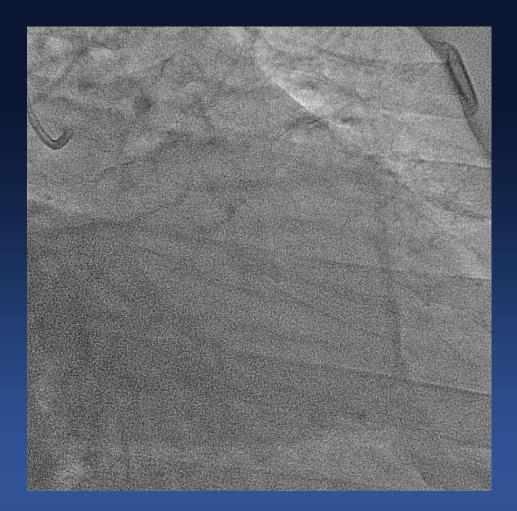

Grade 3 Complete perfusion of the epicardial vessel artery and it's major and minor branches within 3 full cardiac cycles.

TIMI 1 Flow with Collaterals


Grade 0 No flow beyond the point of occlusion (total occlusion).

Grade 1 Contrast passes the point of obstruction but only trickles distal.

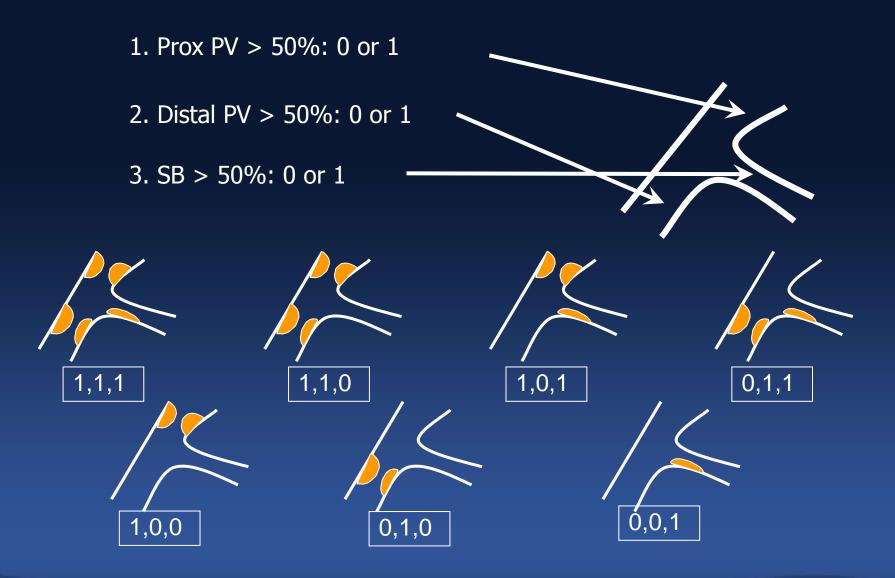
TIMI-2 Flow



Grade 2 Contrast opacifies the entire coronary bed distal to the stenosis with complete filling of the artery and it's major and minor branches after more than 3 full cardiac cycles.

Grade 3 Complete perfusion of the epicardial vessel artery and it's major and minor branches within 3 full cardiac cycles.

TIMI-3 Flow


Grade 3 Complete perfusion of the epicardial vessel artery and it's major and minor branches within 3 full cardiac cycles.

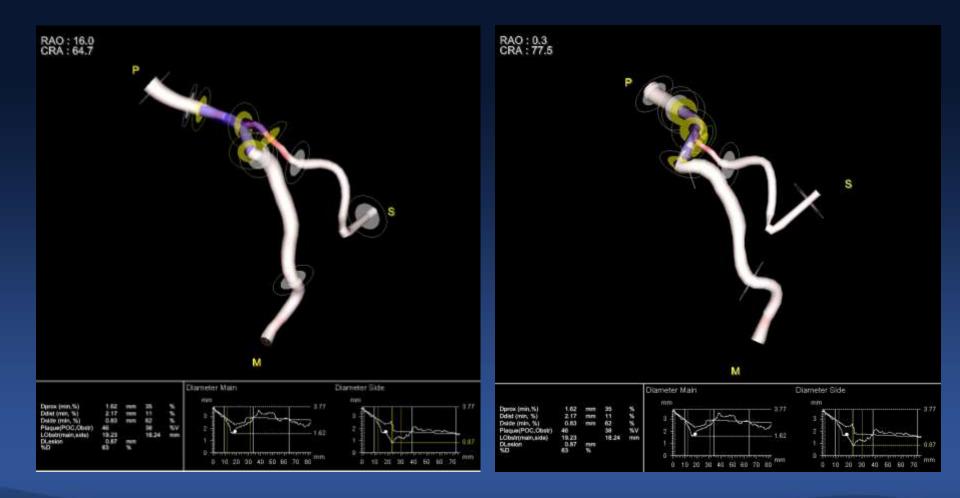
Classification of Bifurcation Stenosis

Medina A.Rev Esp Cardiol. 2006;59:183

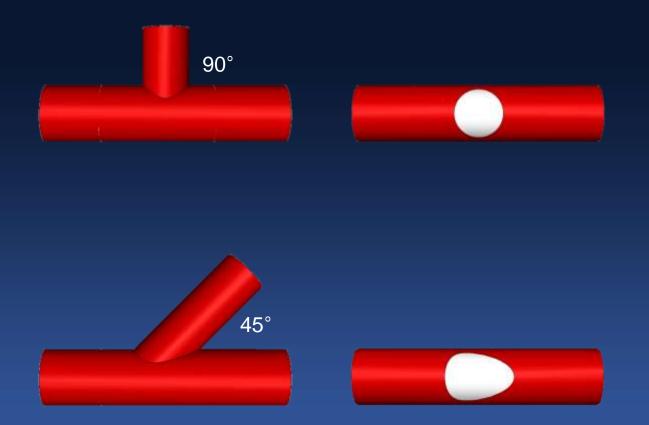
Bifurcation Angle Measures

Angle between Prox PV and SB

Angle between Distal PV and SB



3-D Angle Measurement

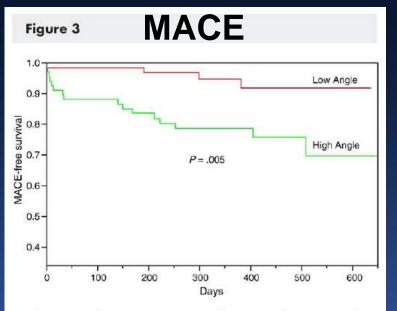


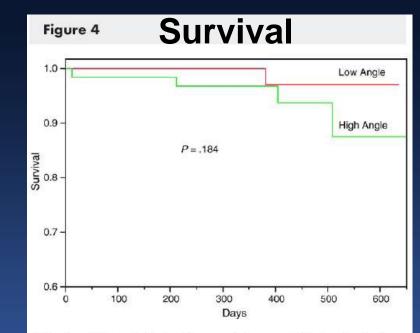
CardioVascular Research Foundation

UNIVERSITY OF ULSAN COLLEGE MEDICINE

Size of the ostium changes with the angle of bifurcation

Courtesy P Mortier et al





Greater Bifurcation Angle associated with higher mortality and MACE with Crush Technique

- 133 pts undergoing crush stenting:
 - 66 pts with low angle (<50 degrees)</p>
 - > 67 pts with high angle (>50 degrees)

Kaplan-Meier plot comparing MACE-free survival up to 648 days between the low-angle group (BA ${<}50^\circ$ and high-angle group (BA ${\geq}50^\circ$).

A Kaplan-Meier plot indicating survival up to 648 days in the low-angle (BA $<50^{\circ}$) and high-angle group (BA $\geq 50^{\circ}$).

Bifurcation angle was an independent predictor of MACE

CardioVascular Research Foundation

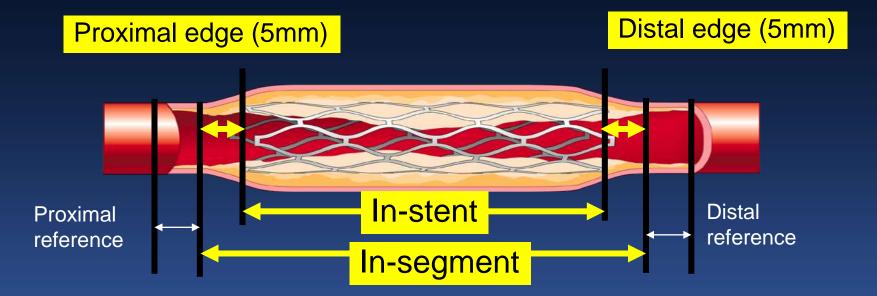
Dzavik V et al. Am Heart J. 2006

COLLEGE MEDICINE

Bifurcation Angiographic Analysis

Qualitative assessment

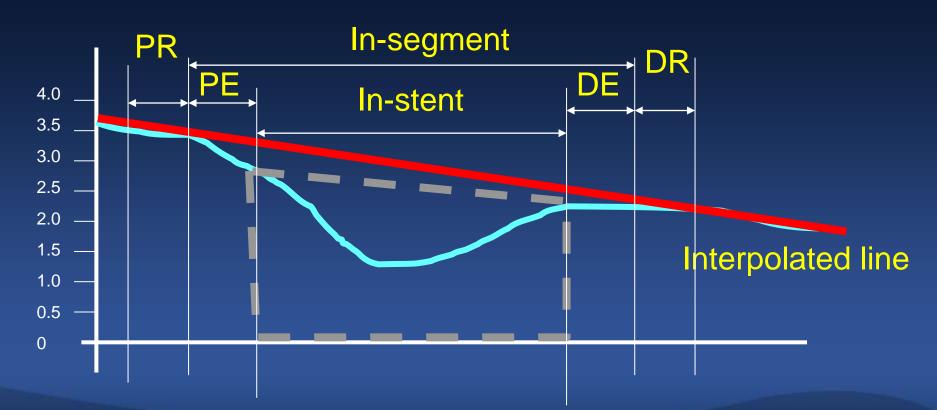
Quantitative assessment


Quantitative Assessment

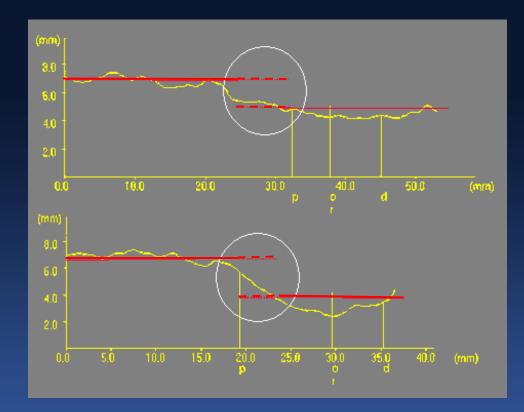
Separated assessment

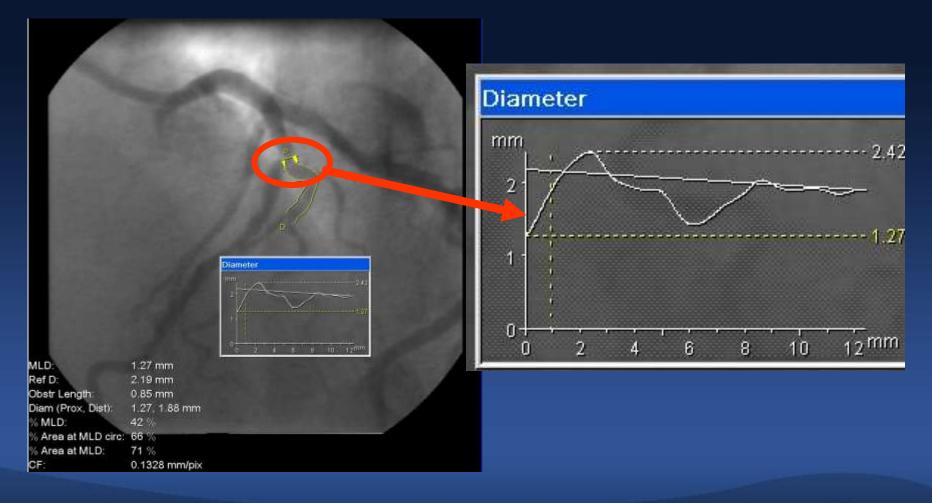
- Main branch (proximal and distal)
- Side branch
- General information on MB and SB
 - Reference diameter, proximal and distal
 - Minimal lumen diameter
 - Diameter stenosis
 - Late loss

Standard DES Measurement

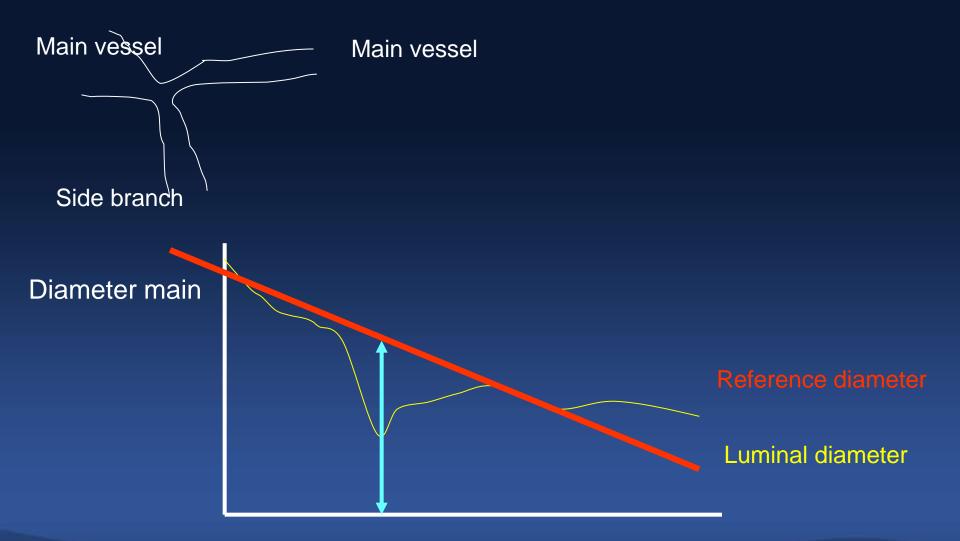


Automatic Border Detection for QCA Interpolated reference line is the index.



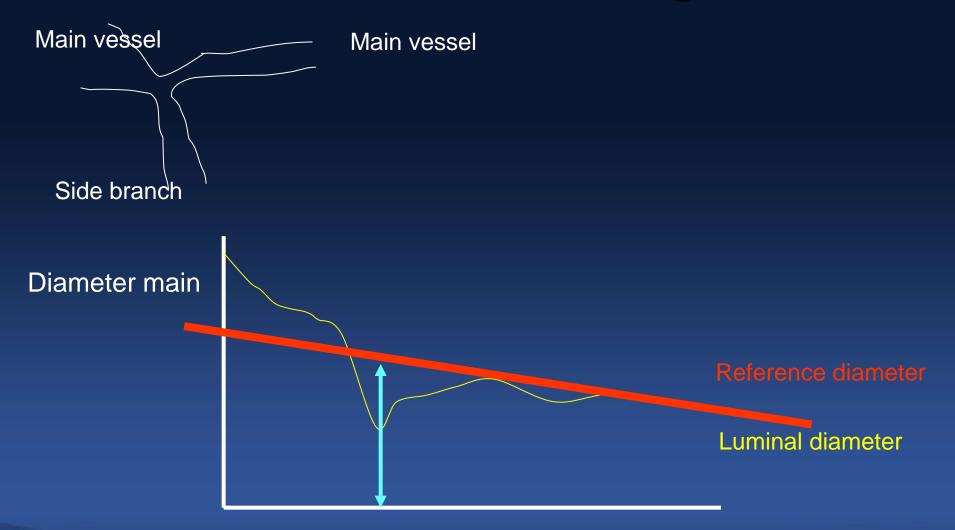

QCA Limitation: Step Down

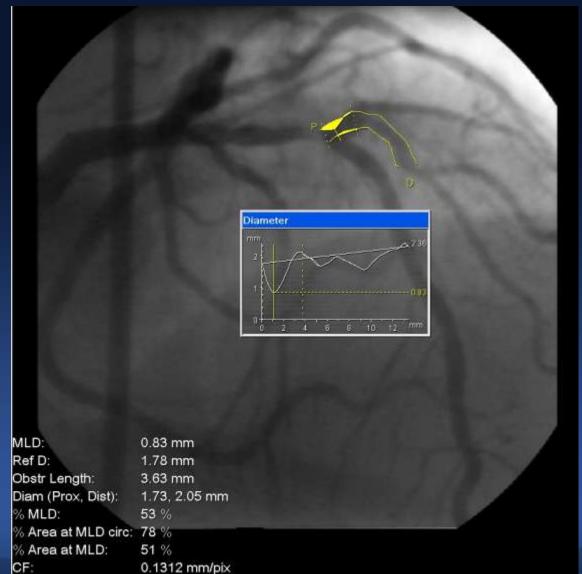
Method to determine the proper reference diameter for each individual segment


The "Step down" phenomenon is a major limitations of Standard QCA when applied to bifurcation analyses

Underestimation of Side Branch Reference

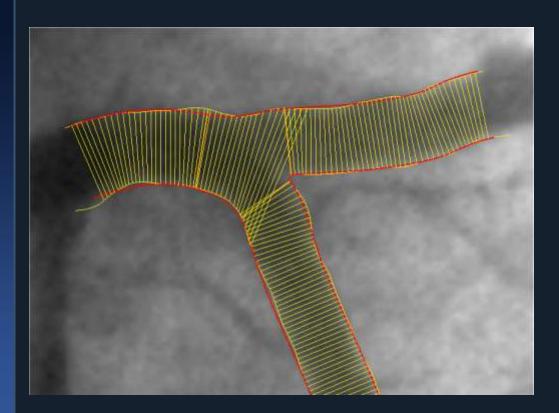
Overestimation of Reference




Underestimation of Reference If the index is the distal segment.

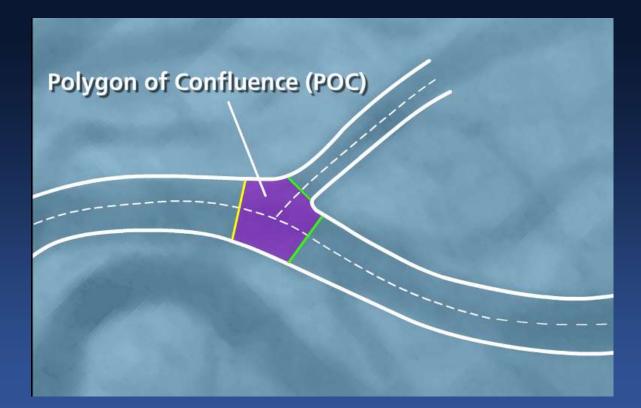
Incorrect Measurement

Challenge in measuring Bifurcations

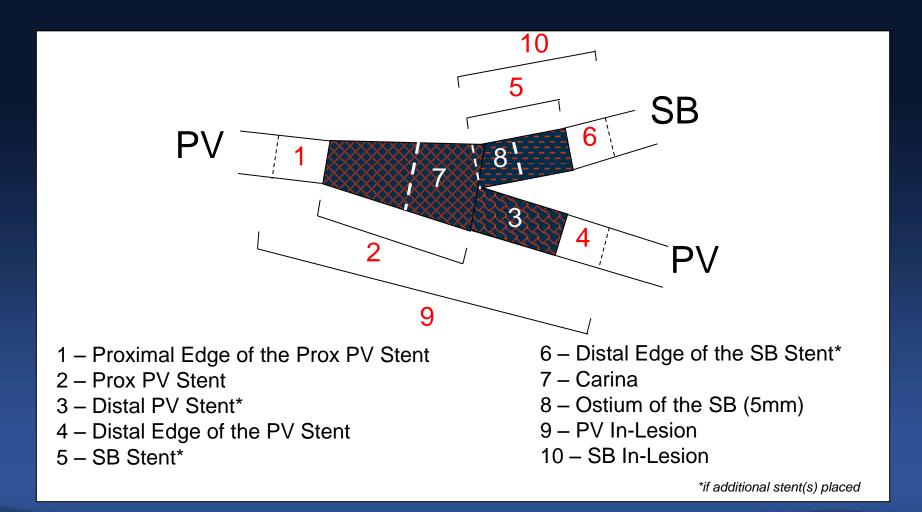

Innovative derivation of RVD in carina segment

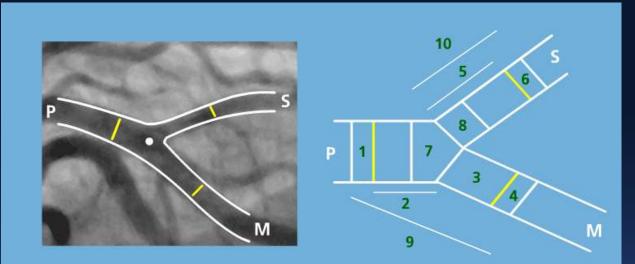
arterial contours reference contours fragment delimiters arterial diameters in proximal parent and carinal segment

Challenge in measuring Bifurcations Innovative derivation of RVD in carina segment


Y Model: LM

Polygon of Confluence by CASS-QCA : Innovative Method of Bifurcation QCA


Ramcharritar S et al. Eurointervention 2008;3:553


Separation of Bifurcation Segments

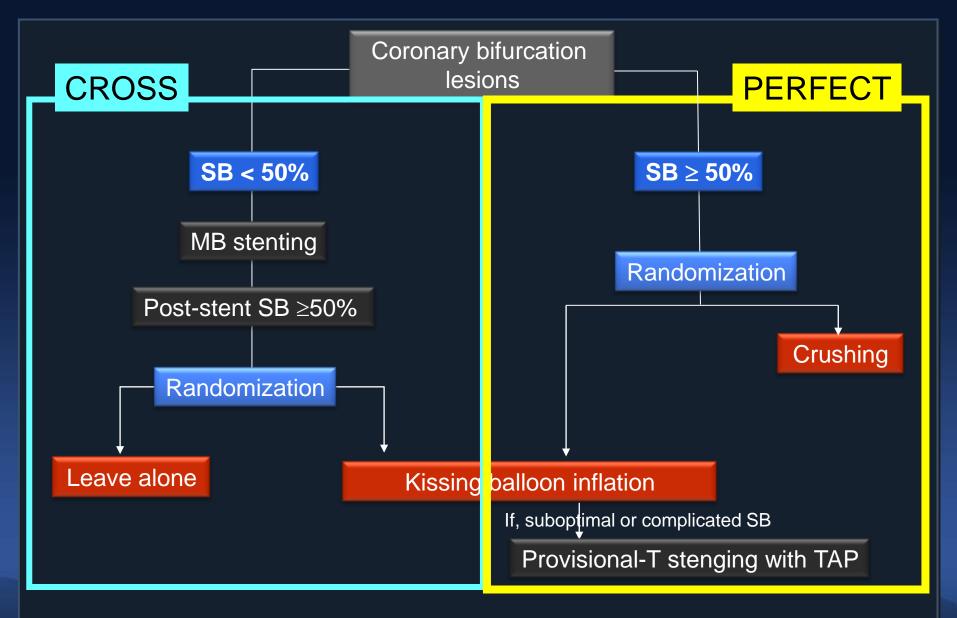
Gorktekin O et al. Catheter Cardiovasc Interv 2007;69:172

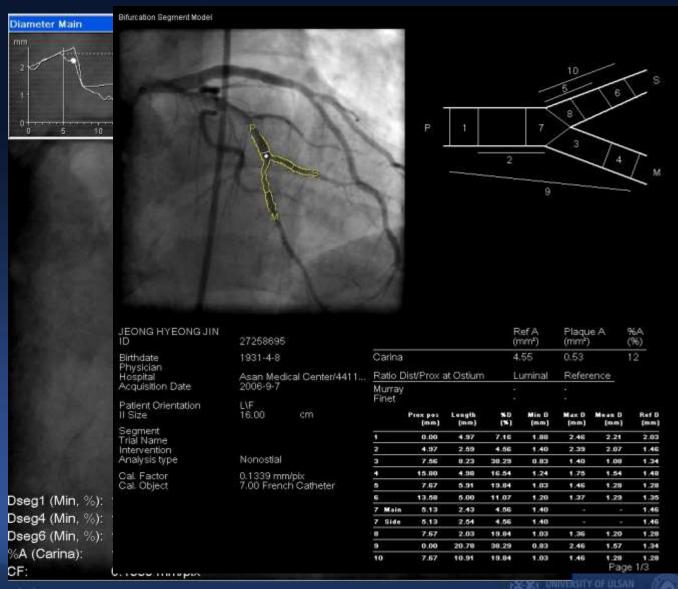
Description of Bifurcation QCA

- 1. Proximal edge (5mm)
- 2. Proximal main stent
- 3. Distal main stent
- 4. Distal edge main (5mm)
- 5. Side branch stent

- 6. Distal edge side (5 mm)
- 7. Polygon of confluence
- 8. Ostium of side branch (5mm)
- 9. Main vessel stent + edges
- 10. Side branch stent + distal edge

Presenting results in segmental model


Ramcharritar S et al. Eurointervention 2008;3:553



CROSS & PERFECT Trials

Dedicated Bifurcation QCA

ASAN Medical Center

Presentation

Table 3. Angiographic Characteristics of Lesions Before and After Procedure

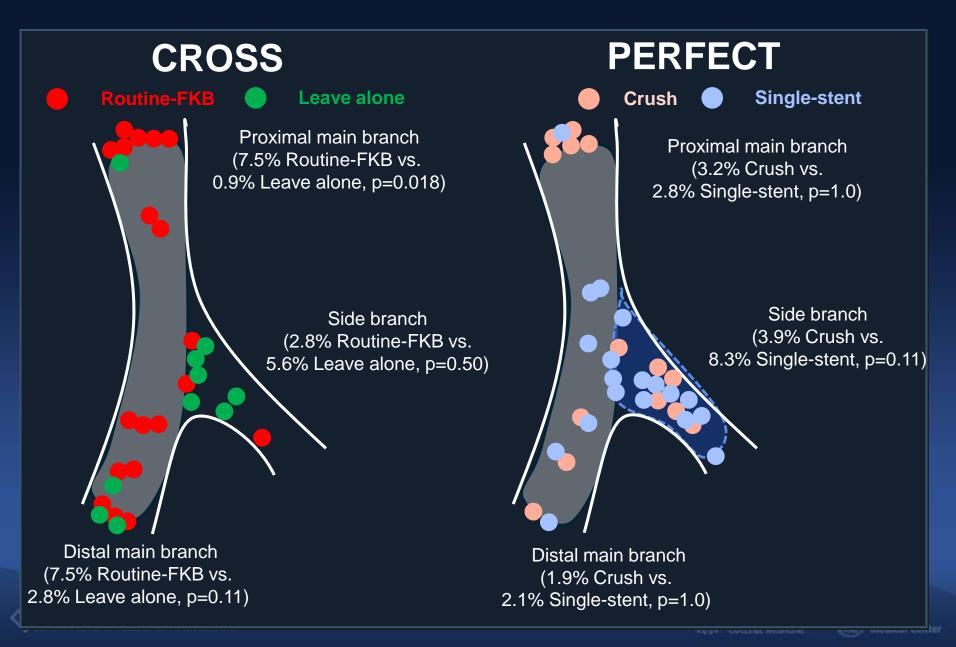
	CROSS Study			PERFECT Study			
Variables	Routine-FKB	Leave-alone	Develop	Crush	Single-stent	Develop	
	(N=151)	(N=155)	P value	(N=213)	(N=206)	P value	
Baseline							
Medina classification			0.18			0.012	
1. 0. 0.	18 (12.2)	15 (9.8)		2 (1.0)	4 (2.0)		
1. 1. 0.	52 (35.1)	74 (48.4)		5 (2.4)	22 (10.9)		
1. 0. 1.	8 (5.4)	4 (2.6)		18 (8.7)	18 (8.9)		
1. 1. 1.	28 (18.9)	24 (15.7)		137 (65.9)	126 (62.4)		
0. 1. 0.	34 (23.0)	25 (16.3)		4 (1.9)	5 (2.5)		
0. 1. 1.	6 (4.1)	4 (2.6)		39 (18.8)	25 (12.4)		
0. 0. 1.	1 (0.7)	3 (2.0)		3 (1.4)	2 (1.0)		
0. 0. 0.	1 (0.7)	4 (2.6)		0	0		
Main branch							
Severe calcification	7 (4.7)	8 (5.2)	0.84	25 (12.0)	25 (12.4)	0.91	
Severe tortuosity	1 (0.7)	0	0.49	0	0	-	
TIMI flow grade			0.14			0.43	
0 or 1	4 (2.7)	5 (3.3)		3 (1.4)	6 (3.0)		
2	4 (2.7)	0		14 (6.7)	10 (5.0)		

26

3	140 (94.6)	148 (96.7)		191 (91.8)	186 (92.1)	
Proximal reference diameter, mm	3.5±0.6	3.4±0.5	0.24	3.6±0.4	3.7±0.5	0.039
Distal reference diameter, mm	2.5±0.4	2.5±0.4	0.86	2.6±0.4	2.6±0.4	0.67
Lesion length, mm	28.3±12.9	27.1±12.8	0.42	28.9±14.6	27.8±13.1	0.43
Minimal lumen diameter, mm	1.2±0.4	1.1±0.4	0.20	1.1±0.4	1.1±0.4	0.75
Diameter stenosis, %	60.5±11.8	61.8±13.4	0.36	64.4±12.3	65.9±11.7	0.21
Side branch						
Severe calcification	0	0	-	5 (2.4)	4 (2.0)	1.0
Severe tortuosity	0	0	-	0	1 (0.5)	0.49
TIMI flow grade			0.84			1.0
0 or 1	2 (1.4)	4 (2.6)		1 (0.5)	1 (0.5)	
2	1 (0.7)	1 (0.7)		16 (7.7)	15 (7.4)	
3	145 (98.0)	148 (96.7)		191 (91.8)	186 (92.1)	
Distal reference diameter, mm	2.1±0.4	2.1±0.4	0.069	2.2±0.4	2.2±0.4	0.17
Lesion length, mm	2.3±4.3	1.4±3.1	0.026	10.3±8.2	8.3±7.3	0.009
Minimal lumen diameter, mm	1.6±0.4	1.7±0.4	0.24	1.1±0.4	1.2±0.4	0.25
Diameter stenosis, %	29.4±13.4	29.0±15.7	0.82	57.2±14.5	53.3±16.5	0.012
Post-procedure						
Main branch						
Stent length, mm	31.5±12.0	30.9±11.7	0.66	34.0±13.5	34.7±13.4	0.64
Minimal luminal diameter, mm						
In-stent	2.6±0.4	2.6±0.4	0.68	2.6±0.4	2.7±0.4	0.041
In-segment	2.2±0.4	2.2±0.4	0.53	2.2±0.4	2.3±0.5	0.13
Diameter stenosis, %						
In-stent	11.6±6.6	12.8±7.2	0.12	13.5±7.2	13.0±6.9	0.48
In-segment	20.3±8.7	20.7±8.3	0.70	22.1±10.0	20.7±8.7	0.12
Side branch						
Stent length, mm	15.3±8.1	24.6	0.42	15.4±7.1	16.4±6.6	0.32
Minimal luminal diameter, mm						
Ostium	1.7±0.4	1.6 ± 0.5	0.053	2.3±0.4	1.9±0.6	< 0.001
In-segment	1.6±0.4	1.5 ± 0.4	0.15	1.8±0.4	1.6±0.4	< 0.001
Diameter stenosis, %						
Ostium	25.8±15.0	32.2 ± 18.2	0.001	13.7±11.1	25.7±17.8	< 0.001
In-segment	28.7±13.3	34.2 ± 16.6	0.002	21.0±10.7	31.1±15.0	< 0.001

Values are presented as number (percentages) and mean $\pm SD$

	CROSS Study			PERFECT Study		
Variables	Routine-FKB	Leave-alone		Crush	Single-stent	
	(N=106)	(N=108)	P value	(N=155)	(N=145)	P value
Overall restenosis, % *	19 (17.9)	10 (9.3)	0.064	13 (8.4)	16 (11.0)	0.44
Main branch						
Minimal luminal diameter, mm						
In-stent	2.2±0.6	2.3±0.5	0.32	2.4±0.4	2.4±0.5	1.0
In-segment	1.9±0.6	2.1±0.4	0.071	2.1±0.4	2.2±0.5	0.44
Diameter stenosis, %						
In-stent	22.8±16.2	20.5±13.4	0.24	19.8±10.6	21.3±13.3	0.26
In-segment	29.7±17.3	25.7±13.1	0.064	26.8±13.1	26.1±12.4	0.65
Late luminal loss, mm						
In-stent	0.4±0.5	0.3±0.4	0.13	0.2±0.3	0.3±0.4	0.036
In-segment	0.2±0.5	0.1±0.4	0.094	0.1±0.4	0.2±0.4	0.24
Restenosis						
In-stent	8 (7.5)	1 (0.9)	0.018	2 (1.3)	5 (3.4)	0.27
Proximal edge	6 (5.7)	1 (0.9)	0.064	5 (3.2)	1 (0.7)	0.22
Distal edge	3 (2.8)	2 (1.9)	0.68	1 (0.6)	1 (0.7)	1.0
In-segment	16 (15.1)	4 (3.7)	0.004	8 (5.2)	7 (4.8)	0.90
Restenosis pattern			1.0			1.0
Focal	10 (62.5)	2 (50.0)		5 (62.5)	4 (57.1)	
Diffuse	6 (37.5)	2 (50.0)		3 (37.5)	3 (42.9)	
Side branch						
Minimal luminal diameter, mm						
Ostium	1.6±0.4	1.5±0.5	0.17	2.0±0.4	1.6±0.5	< 0.00
In-segment	1.5±0.4	1.5±0.4	0.73	1.7±0.4	1.4±0.4	< 0.00
Diameter stenosis, %						
Ostium	27.5±15.9	33.3±16.9	0.010	23.2±15.1	34.3±18.9	< 0.00
In-segment †	31.1±14.5	34.9±15.8	0.074	27.7±13.2	37.7±17.1	< 0.00
Late luminal loss, mm						
Ostium	0.1±0.4	0.1±0.4	0.59	0.3±0.4	0.3±0.5	0.15
In-segment	0.1±0.4	0.1±0.4	0.88	0.1±0.3	0.2±0.3	0.36
Restenosis						
Ostium	2 (1.9)	4 (3.7)	0.68	1 (0.6)	4 (2.8)	0.20
In-segment	3 (2.8)	6 (5.6)	0.50	6 (3.9)	12 (8.3)	0.12
Restenosis pattern			0.33			0.52
Focal	2 (66.7)	6 (100)		6 (100)	9 (75.0)	
Diffuse	1 (33.3)	0		0	3 (25.0)	



Values are presented as number (percentages) and mean±SD. * and † were the primary end points of the PERFECT and CROSS studies.

ASAN Medical Center

Sites of restenosis



Conclusions

- In angiographic analysis for bifurcation coronary lesions, both qualitative and quantitative measurements are performed.
- Qualitative assessment includes various morphological evaluations of parent vessel and side branch.
- After PCI, SB ostium is the major site of restenosis after bifurcation stenting. Therefore, careful SB assessment is the key element of bifurcation angiographic analysis.
- In quantitative assessment, ordinary QCA analysis has many limitations in assessing bifurcation lesions.
- Dedicated bifurcation software is useful to accurately represent quantitative parameters of angiography.

Thank you very much

CardioVascular Research Foundation

