TAVR – Lessons on the Natural History of Aortic Stenosis

James D. Flaherty, MD
Associate Professor of Medicine
Bluhm Cardiovascular Institute
Feinberg School of Medicine, Northwestern University
April 29, 2018

Disclosures

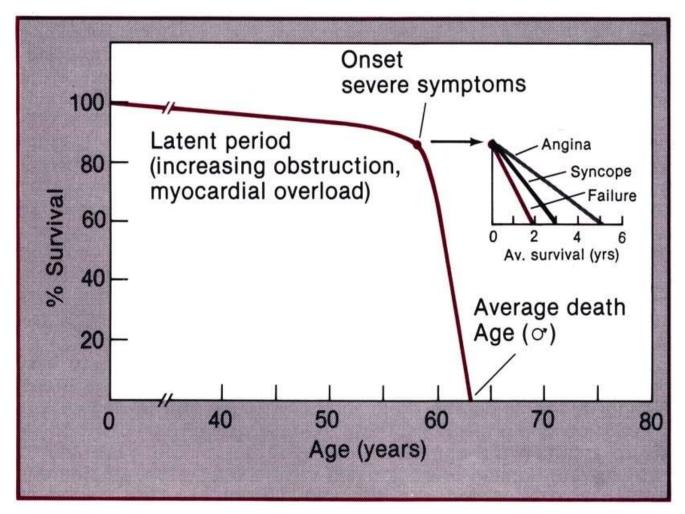
Research:

PARTNER 3 trial EARLY TAVR trial REFLECT trial

Overview

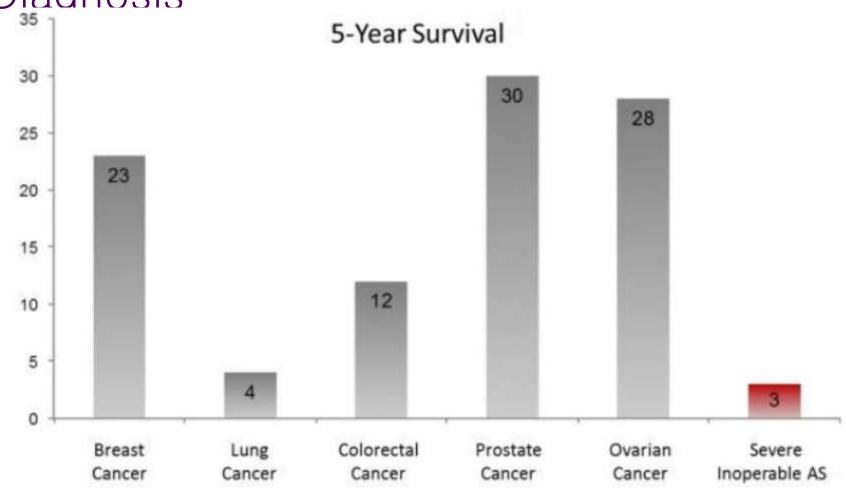
Life Expectancy and Quality of Life

Cardiac Function Before and After

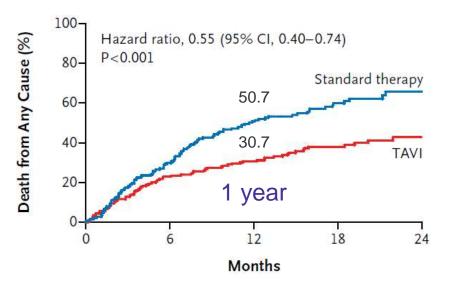

Biomarkers and TAVR

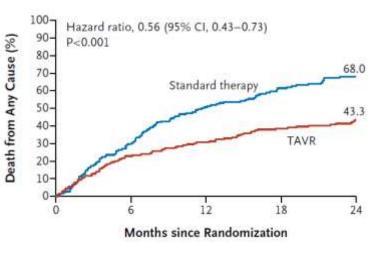
TAVR and Other Organ Systems

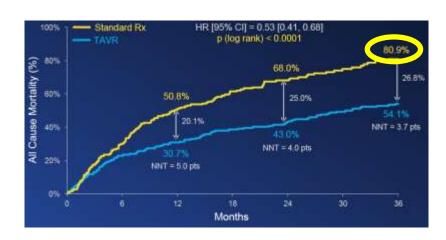
Life Expectancy and Quality of Life


TAVR has confirmed that severe AS is a terminal diagnosis and treatment can extend both length and quality of life.

Natural History of Aortic Stenosis

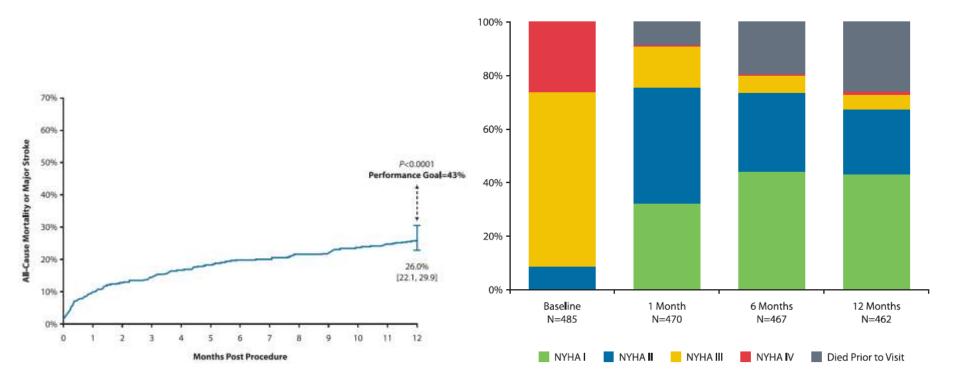

Ross & Braunwald Circulation 1968;38S


Severe Aortic Stenosis is a Terrible Diagnosis



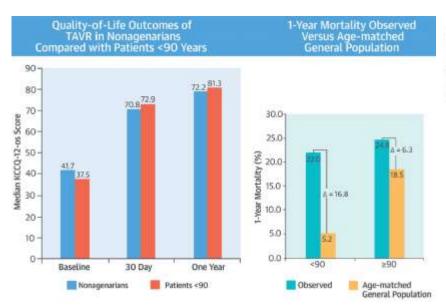
Courtesy of Murat Tuczu, MD

PARTNER Cohort B - Inoperable



2 years 3 years

US CoreValve Extreme Risk – 1 year Outcomes


J Am Coll Cardiol 2014;63:1972–81


Should Transcatheter Aortic Valve Replacement Be Performed in Nonagenarians?

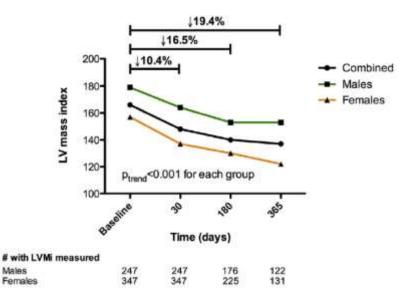
Insights From the STS/ACC TVT Registry

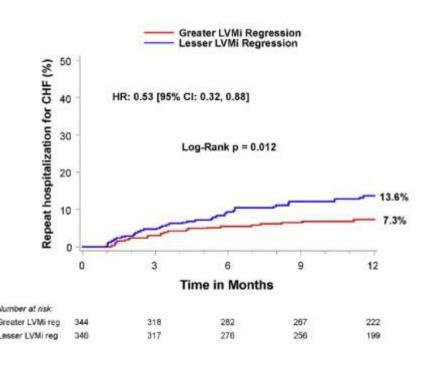
- 24,025 TAVR pts 11/11-9/14
- $15.7\% \ge 90 \text{ yrs}$
- 2.8% absolute higher 1 year mortality
- STS higher (10.9% vs. 8.1%), (same O/E)
- ↓ QOL at 30 d (vs. <90 yr)

Arsalan et al 2016;67:1387-95

Cardiac Function Before and After

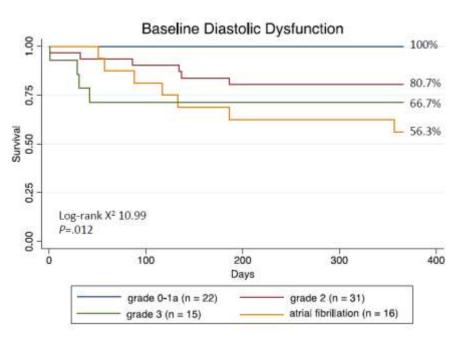
Aortic Stenosis contributes to structural and functional cardiac dysfunction – likely before symptoms become manifest.


Cardiac Function Before and After


- LV Structure and Function
- Myocardial Fibrosis
- RV Function
- Pulmonary Hypertension
- Mitral Regurgitation
- The Conduction System

Early Regression of Severe Left Ventricular Hypertrophy After Transcatheter Aortic Valve Replacement Is Associated With Decreased Hospitalizations

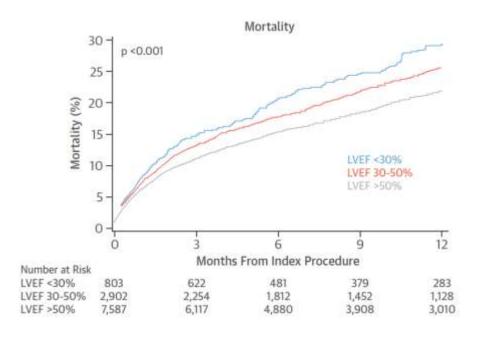
- 690 PARTNER Cohort A pts with severe LVH
- LVH regression after TAVR measured at 30 days
- Early regression no effect on mortality but ↓ hospitalization (for HF), lower BNP and ↑QOL

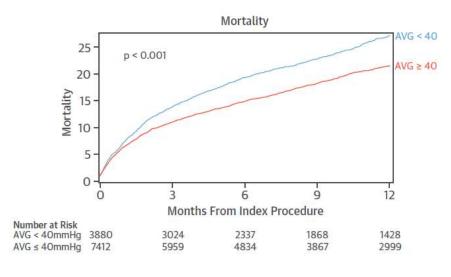


Lindman et al 2014;7:662-73

Diastolic Function and Transcatheter Aortic Valve Replacement

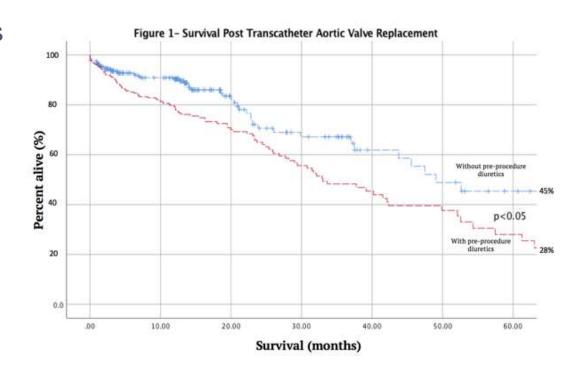
- 120 TAVR pts 1/12-6/14
- Baseline DD grade associated with ↓ survival
- Post-TAVR improvement in parameters of DD (lateral e' velocity, E/lateral e', LA volume index)


Variable	HR	P value	
One-year death			
Inotrope	1.219 (1.020-1.417)	.032	
Baseline diastolic dysfunction (per grade)	1.163 1.049-1.277)	.0050	
Trough systolic blood pressure (per 1 mmHg)	0.993 (0.987-1.000)	.051	
One-year death or cardiovascular hospitalization			
Inotrope	1.340 (1.116-1.564)	.0030	
Baseline diastolic dysfunction (per grade)	1.174 (1.032–1.318)	.018	


Blair ... Flaherty 2017;30:541-51

Impact of Ejection Fraction and Aortic Valve Gradient on Outcomes of Transcatheter Aortic Valve Replacement

- 11,292 TAVR pts TVT registry
- Lower LVEF associated with ↓ survival and ↑ recurrent HF
- After adjustment, only low gradient (<40 mmHg) remained associated with ↓ survival (HR 1.21, p<0.001) and ↑ recurrent HF (HR 1.52, p<0.001)

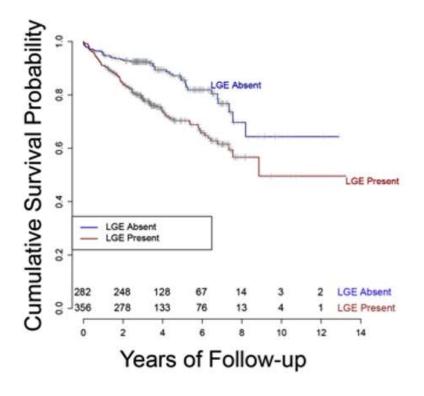


Baron et al 2016;67:2349-58

Loop Diuretic Use Prior to TAVR is Associated with Increased Mortality

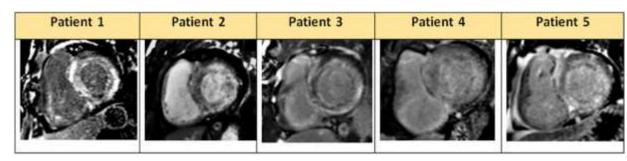
- 572 TAVR patients
- 52.1% on loop diuretics pre-TAVR
- \$\psi\$ survival at 1 year on loop diuretics (79.4% vs. 90.4%, p=0.003)
- For every 10 mg of furosemide daily equivalent, there was 5.1% increase risk of death

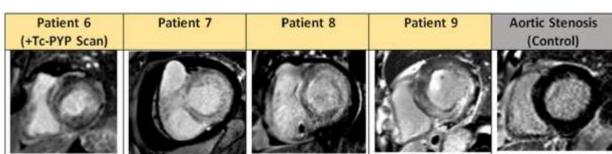
Canty ... Flaherty ACC '18 Orlando


in Severe Aortic Stenosis:

Data from the BSCMR Valve Consortium

- 703 pts with severe AS underwent TAVR or SAVR 1/03-5/15 and had CMR
- 51% with myocardial scar
- Scar associated with double long-term mortality (28.7% vs. 14.5%, p<0.001)
- For every 1% ↑ scar burden then was a 10% ↑ all-cause mortality

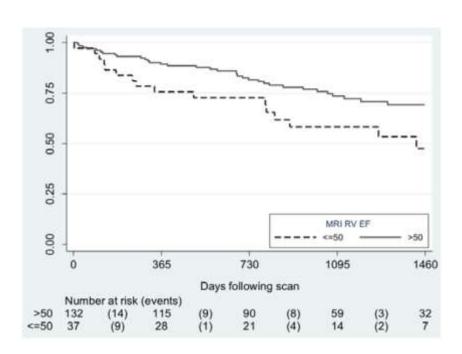

All-Cause Mortality



Thomas Treibel et al

Cardiac amyloidosis is prevalent in older patients with aortic stenosis and carries worse prognosis Journal of Cardiovascular Magnetic Resonance

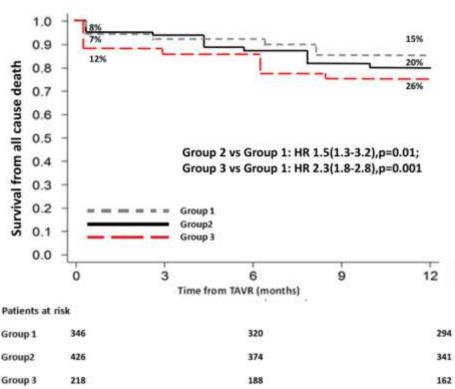
- 113 pts with AS & underwent CMR
- Suspected CA in 9 (8%)
- All > 80 yrs, 89% male
- Low-flow low gradient AS in 7/9 (78%)
- AS + CA higher mortality at 1 year than AS alone (56% vs. 20%, p<0.0001) including those treated



Cavalcante et al 2017;19:98

Prevalence and Prognostic Significance of Right Ventricular Systolic Dysfunction in Patients Undergoing Transcatheter Aortic Valve Implantation

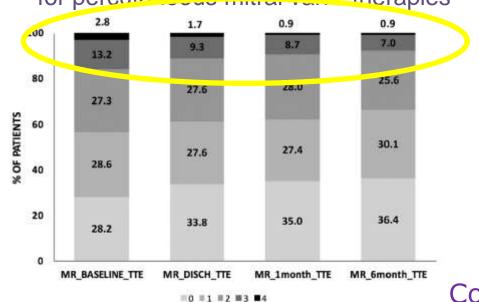
- 190 TAVR pts who underwent CMR
- Impaired RV function in 23.7%
- RV dysfxn associated with lower LVEF (42% vs. 69%)
- RV dysfxn (RVEF ≤ 50%) associated with worse long-term survival after TAVR (HR 2.12, p=0.017)

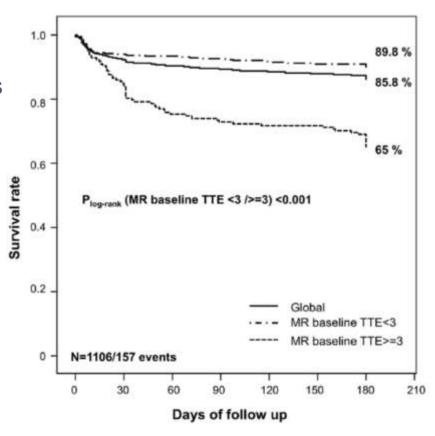

Cardiovascular Interventions

Lindsay et al 2016;9:e003486

Persistence of Severe Pulmonary Hypertension After Transcatheter Aortic Valve Replacement

- 990 TAVR pts:
 - Group 1 PASP <40 mmHg (35%)
 - Group 2 PASP 40-60 mmHg (43%)
 - Group 3 PASP >60 mmHg (22%)
- Similar 30 day survival, but worse HF outcomes in Group 3
- PASP dropped ≥15 mmHg in 32% of Group 2 and 35% of Group 3 at 30 days
- Worse 1 year survival in Groups 2 and 3
- Worst survival at 1 year (HF 2.4, p=0.04) when PASP remained >60 mmHg at 30 days

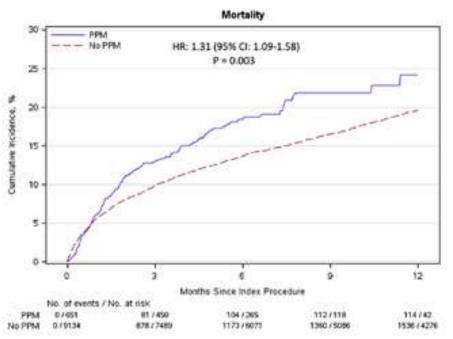


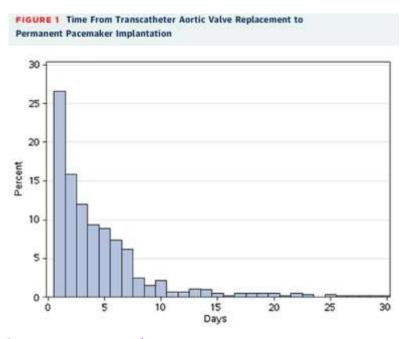


Testa et al 2016;9:e003563

Mitral Regurgitation After Cardiovascular Interventions Transcatheter Aortic Valve Replacement

- 1,110 TAVR pts, 16% with MR pre-TAVR
- Degree of MR improved in 60%
- †Mitral annular diameter and mitral apparatus calcification predictive of persistent MR
- 13.1% with persistent MR could be eligible for percutaneous mitral valve therapies




Cortes et al 2016;9:2189-99

Incidence, Predictors, and Outcomes of Permanent Pacemaker Implantation Following Transcatheter Aortic Valve Replacement

- 9,785 TAVR pts TVT registry 11/11-9/14
- 25.1% of self-expanding, 4.3% of balloon-expandable
- PPM associated with ↑ mortality at 1 year (HR 1.31) (p=0.003)

Fadahunsi et al 2016;9:2189-99

Impact of New-Onset Left Bundle Branch Block and Periprocedural Permanent Pacemaker Implantation on Clinical Outcomes in Patients Undergoing Transcatheter Aortic Valve Replacement Circulation

1-year RR of permanent pacemaker implantation

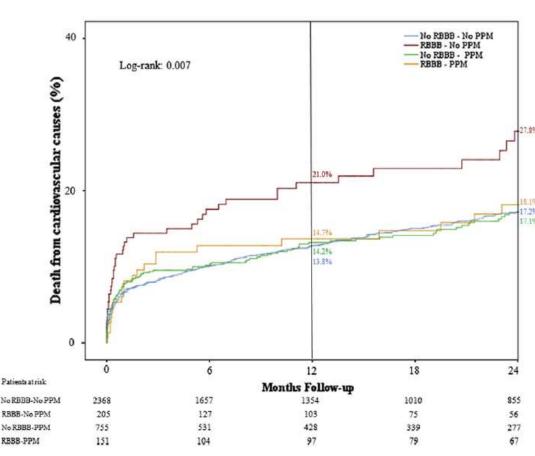
17 studies, ~ 12,000 pts

New LBBB 13.3 – 37.0%

 New LBBB associated with new PPM (RR 2.18) and cardiac death (RR 1.39)

	LBBB following	TAVR	No LBBB following	TAVR		Risk Ratio		Risk	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95%	CI	M-H, Ran	dom, 95% CI	
Testa, et al. 2013	41	224	101	594	23.8%	1.08 [0.77, 1.5	0)	-	•	
Schymik, et al. 2015	28	197	41	437	22.0%	1.51 (0.97, 2.3	8]		-	
Carrabba, et al. 2015	21	34	12	58	20.1%	2.99 (1.69, 5.2	7]		-	_
Naziř, et al. 2014	16	121	44	1030	20.6%	3.10 [1.80, 5.3	1]		-	_
Urena, et al 2014	6	79	9	589	13.5%	4.97 (1.82, 13.5	9		8-	•
Total (95% CI)		655		2708	100.0%	2.18 [1.28, 3.7	0]		-	
Total events	112		207							
Heterogeneity: Tau ² =	0.28; ChP = 20.73.	# = 4 (F	P = 0.0004); IP = 81%				100		! !	1
Test for overall effect :	Z = 2.88 (P = 0.004)						0.1 0.	2 0.5	1 2	5 10
							to LBBB fol	lowing TAVR	LBBB follow	ving TAVR

1-year RR of all-cause death


Study or Subgroup	LBBB following	TAVR 10tai	No LBBB following Events		weight	Risk Ratio M-H, Random, 95% C1	Risk Ratio M-H, Random, 95% CI
Franconi, et al. 2013	8	63	26	175	6.2%	0.85 [0.41, 1.79]	
lacif, et al. 2014	21	121	190	1030	13.3%	0.94 [0.62, 1.42]	-
Testa, et al. 2013	42	224	117	594	16.7%	0.95 [0.69, 1.31]	-
Carrabba, et al. 2015	4	34	7	58	2.9%	0.97 [0.31, 3.09]	
Urena, et al 2014.	22	79	167	589	14.4%	0.98 [0.67, 1.43]	
Houthuizen, et al. 2012	62	233	78	446	17.7%	1.52 [1.13, 2.04]	
Schymik, et al. 2015	41	197	57	437	14.9%	1.60 [1.11, 2.30]	
Houthuizen, et al. 2014	30	111	56	365	14.0%	1.76 [1.19, 2.60]	
Total (95% CI)		1062		3694	100.0%	1.21 [0.98, 1.50]	•
Total events	230		698			A 15	(252)
Heterogeneity: Tau ² = 0.	04 Chi ² = 13.89, d	1=7(P:	0.05); P = 50%			t-	
Test for overall effect: Z	= 1.82 (P = 0.07)	- 17.5				0.	2 0.5 1 2

Regueiro et al 2016;9:e003635

Clinical Impact of Baseline Right Bundle Branch Block in Patients Undergoing Transcatheter Aortic Valve Replacement

- 3,527 TAVR pts
- 10.3% with RBBB
- ↑ PPM (40.1% vs. 13.5%, p<0.001)
- ↑30 day death (10.2% vs. 6.9%, p=0.024)
- RBBB and no new PPM had highest risk of CV death at 2 years


Auffret et al 2017;10:1564-74

Post-Balloon Dilation Following TAVR tCt2017 Implantation Increases Pacemaker Dependency

- 474 TAVR pts w/o PPM,14.1% new PPM
- 40% pacer dependent at 30 days, 10.9% dependent at 1 year
- PPM dependency more common after selfexpanding valve (75.0% vs. 30.2%, p<0.01)
- Post-balloon dilation associated with ↑ PPM (17.5% vs. 9.8%, p=0.04) and ↑ dependency (66.7% vs. 19.32%, p<0.01)

Conduction Recovery After TAVR

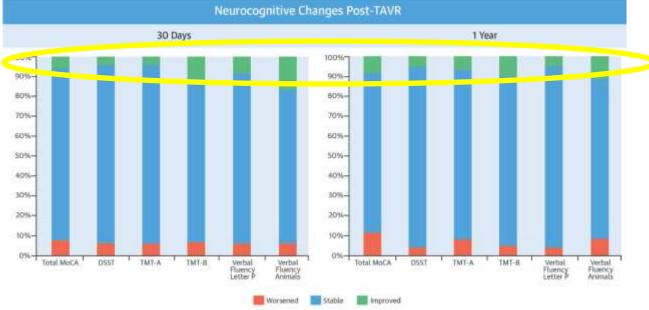
Figure 1. Percent of patients who remain pacemaker dependent over 1 year follow-up

Kaplan ... Flaherty JACC 70:B230

TAVR and Other Organ Systems

The deleterious effects of aortic stenosis and the benefits from it's treatment are not limited to the cardiovascular system.

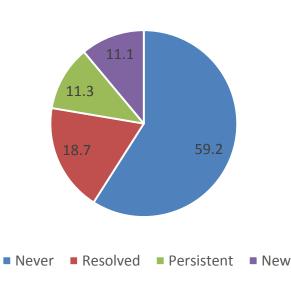
TAVR and Other Organ Systems

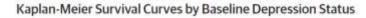

- The Brain
- The GI Tract
- The Kidneys

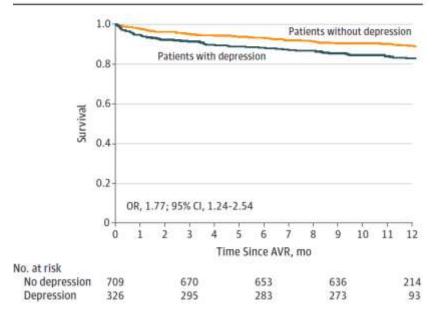
Neurocognitive Changes, Silent Emboli and

Serial Changes in Cognitive Function Following Transcatheter Aortic Valve Replacement

Auffret *et al*. 2016;68:2129-41

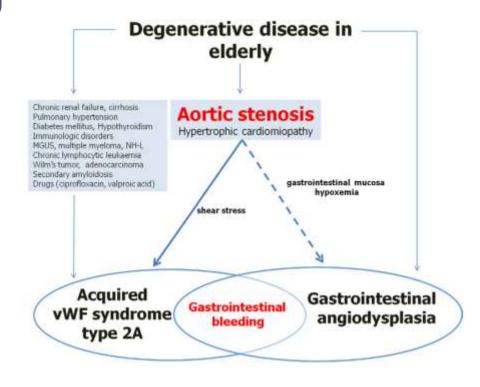

51 TAVR patients


- "Silent" cerebral embolic common after TAVR (68-98%)
- Associated with cognitive decline and dementia
- Consequences can be hard to detect and quantify


Association of Depression With Mortality in Older Adults Undergoing Transcatheter or Surgical Aortic Valve Replacement JAMA Cardiology

- 1035 TAVR patients ≥ 70 yrs
- 31.5% + screening for depression (but only 8.6% documented)
- Baseline depression associated with increased mortality at 30 d (OR 2.20) and 1 year (OR 1.53)
- Persistent depression (at 6 mo) even worse 1 year mortality (OR 2.98)

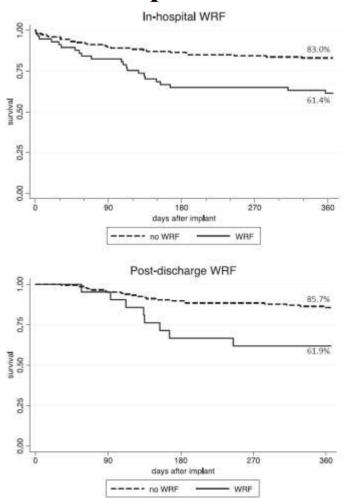
Depression at 6 months



Drudi et al 2018;3:191-7

Heyde's Syndrome and TAVR

- AS and GI Bleeding (Edward J. Heyde 1958)
- Acquired wWF deficiency
- About 2% of AS pts
- TAVR usually curative



Godino et al *JACC* 2013;61:687-9

Inhospital and Post-discharge Changes in Renal Function After Transcatheter Aortic Valve Replacement

The American Journal of Cardiology

- 208 TAVR pts 6/08-6/14
- Worsening renal function (WRF) = ↑ creatinine ≥ 0.3 mg/dl)
- WRF 28% in-hospital, 12%
 30 day
- IRF 37% in-hospital, 15%30 day
- WRF at 30 days associated with ↑ 1 year mortality (HF 1.18 for every 1 mg/dl ↑ creatinine)

Blair ... Flaherty 2016;117:633-9

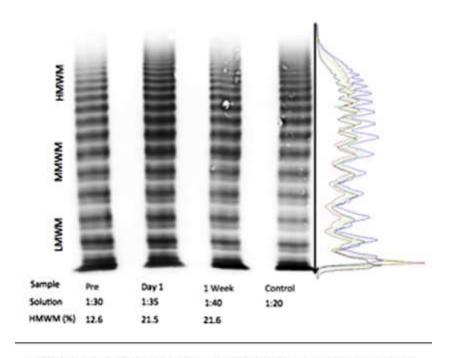
Biomarkers and TAVR

There is an emerging abundance of bloodstream information related to aortic stenosis that has prognostic implications before and after TAVR.

Biomarkers and TAVR

- -BNP
- Troponin
- Others

BNP and Troponin


- BNP elevation before and after TAVR correlates with worse long-term outcomes
- Troponin elevation before TAVR correlates with worse long-term outcomes
- Troponin elevation is common after TAVR but does not correlate with worse long-term outcomes (in predominant transfemoral cohort using latest generation TAVR systems)

Thanassoulis et al *NEJM* 2013;368:503-12 Kamstrup et al *JACC* 2014;63:470-7 Elmariah et al *JACC Intv* 2017;10:2345-6 Stundl et al *JACC Intv* 2017;10:1550-60

Treatment of Acquired von Willebrand Syndrome in Aortic Stenosis With Transcatheter Aortic Valve Replacement

JACC Cardiovascular Interventions

- 95 TAVR patients
- 42% with abnl vWF multimers
- Abnormal vWF multimers proportion to AV gradient
- vWF corrected in most pts after TAVR
- Residual AI was associated with less vWF recovery

Exemplary illustration of the multimer analysis by gel electrophoresis and quantitative densitometry. HMWM = high-molecular-weight multimer; LMWM = low-molecular-weight multimer; MMWM = medium-molecular-weight multimer.

Spagenberg et al 2015;8:692-700

Novel Biomarkers with AS & TAVR

- Lipoprotein(a)
 - Genetic variations in LPA locus (mediated by Lpa levels)
 correlates with aortic valve calcifications
 - Elevated Lp(a) levels correlate with AS
- Acylcarnitines
 - Pre-TAVR elevations correlate with maladaptive LV remodeling and metabolic derangements
- Soluble ST2, Neutrophil-lymphocyte ratio (NLR) and Platelet-lymphocyte ratio (PLR)
 - Pre-TAVR elevations correlate with worse outcomes

Abramowitz et al *AJC* 2015;116:1904-9 Mizutani et al *JAHA* 2017;6:e006 1 12 Koflet et al *JAMA Card* In Press

Stundl et al *AJC* 2017;120:986-93 Condado et al *Int J Card* 2016;223:444-9

Conclusions

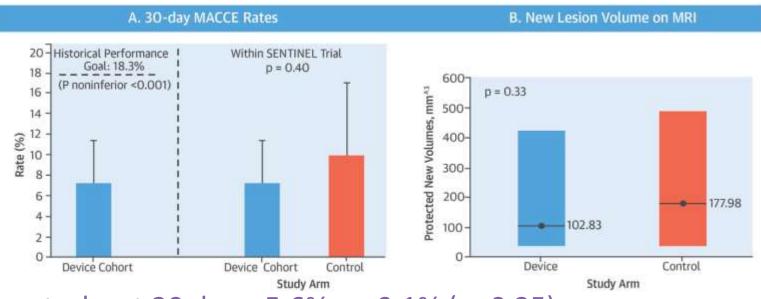
- Severe symptomatic aortic stenosis is a terminal diagnosis.
- AS confers structural and functional changes on the heart some of which may reverse with TAVR.
- TAVR has reinforced and revealed the impact of aortic stenosis on the rest of the body and on biomarkers.
- The totality of the evidence thus far argues strongly in favor of early intervention in the treatment of AS.
- Through large RCT's and registries, TAVR has created a massive research platform to better understand the natural history of aortic stenosis.

SENTINEL Trial

Kapadia *et al*. 2017;69:367-77

Protection Against Cerebral Embolism During Transcatheter Aortic Valve Replacement

A Distal Filter Pore Size – 140 µm Proximal Filter


Right Transradial 91.2% (6Fr) 个 time 15 ½ minutes

Both filters 92.0% At least 1 filter 99.1%

SENTINEL Trial

- 363 patients (device/control/safety)
- Safety endpoint MACCE at 30 d
- Efficacy endpoint –↓ new lesion volume by MRI

- stroke at 30 days: 5.6% vs. 9.1% (p=0.25)
- neurocognitive function similar (decline α lesion volume)
- debris found in 99% of baskets