Fundamentals, Techniques, Pitfalls, and Limitations of MDCT Interpretation and Measurement

3rd Annual Imaging & Physiology Summit

November 20-21, 2009 Seoul, Korea

Wm. Guy Weigold, MD, FACC Cardiovascular Research Institute Washington Hospital Center Washington, DC

Traditional helical CT lacks sufficient temporal resolution to image the heart

Traditional recon algorithms *average* all of the acquired data (do not temporize the data)

ECG Gating Permits Visualization of the Moving Heart

Prospective Cardiac CT: X-Ray Tube Mostly Off

Pitfalls & Limitations

- Limitations
 - Noise
 - Motion Artifacts
 - Gating Artifacts
 - Beam Hardening
 - Volume Averaging

- Pitfalls
 - MIP pitfall
 - •cMPR pitfalls
 - VR pitfalls

Limitations

Noise

"Thin Slice" scanning is required for coronary CTA... ...but increases image noise

- Standard CT slice thickness = 5 mm
- Cardiac CT slice thickness = 0.5-0.75 mm
- Why?
 - Thin collimation = Better resolution of small structures (coronary arteries)

Axial Recons: Thin Slice = High Resolution

Coronal & Oblique Recons Thin slice CT = preservation of z-axis resolution

"Thin Slice" scanning is required for coronary CTA... ...but increases image noise

- Case Example
 - 37 yo woman
 - History of hypertension, diabetes
 - Symptom: palpitations during exercise
 - Treadmill stress test:
 - Palpitations during exercise = PVC's
 - But also: mild ischemia, anterior wall → artifact?

CT Scan

- 5'2" (1.57 m) tall and 272 lbs (124 kg)
- BMI = 50 kg/m^2
- Pulse 71 bpm (sinus rhythm)
 - 15 mg metoprolol i.v. → 55 bpm
- Tube settings:
 - 140 kVp, 425 mAs
- 85 mL contrast @ 5 mL/sec
- X-ray dose: 553 mGy (9.4 mSv)

Obesity Creates Excessive Image Noise

- Signal to noise problem
- Morbid obesity = ûûû Image Noise
- + Weak "signal" = ♥↓↓ SNR
- Poor SNR = Decreased test accuracy

Patient → Detector

Contrast-to-Noise Ratio

Noise

With optimal HR reduction and use of Dose Modulation, it is <u>possible</u> to obtain adequate image quality by using higher tube current...

58yo F 6' 250 lb BMI 36

59yo F 5'3"' 240 lb BMI 42

Noise

<u>But</u> only at the cost of significantly higher radiation exposure...

990 mGy 17 mSv

1229 mGy 21 mSv

The Obese Patient

Do Cardiac CT

Do Not Do Cardiac CT

Cath undesirable

Pulse < 65 bpm

Regular rhythm

Good IV access

Normal renal function

Older (>70)

Men

BMI < 40

Weak indication

High heart rate

Irregular rhythm

Elevated Cr

CABG / Stent

Younger (<50)

Women

BMI > 45

Limitations

Motion

Motion Artifact: Concepts

- Temporal resolution is like shutterspeed
- It takes time to acquire the image
 - Time required = temporal resolution
 - In CCT the time is 80-200 ms
 - In cineangiography the time is 10 ms
- Motion during acquisition creates artifacts which may be misinterpreted as pathology
- To prevent distortion:
 - (a) Breath-hold
 - (b) Heart rate modulation

Respiratory Motion

Respiratory motion

Respiratory motion

- CACS = 0
- Breathing during scan

Respiratory motion: pseudostenosis

Respiratory Motion

- Avoid at all costs!
- Nurses & Techs should very carefully explain to patient
- ** Practice breath holding**

Cardiac Motion (phase specific)

Always
review
coronary CT
angiograms
in multiple
phases
(usually 3)

Cardiac Motion (phase specific)

75% phase

80% phase

Non-Coronary Motion Artifact

Heart Rate Modulation for Cardiac CT

- Heart rate & rhythm significantly influence CCT image quality *
- High quality requires aggressive heart rate modulation
- Target heart rate << 65 bpm
- Nitroglycerin (800 ug)
- Review quality before discharging pt

Limitations

Gating Artifacts

Gating Artifact Concepts

- Actually a form of motion artifact
- Entire cardiac CT is performed during one, single, brief acquisition
- Images are reconstructed after the fact, using the ECG time-stamp
 - Motion-free axial images are reconstructed from the data obtained during the end-diastolic portion of the cardiac cycle, as defined by the ECG
 - Usually 75% of the length of the cardiac cycle

Gating

Example of Gating Artifact: PVC

CCTA: Chest Pain

CCTA Chest Pain

CCTA Chest Pain

CCTA Chest Pain

Limitations

Beam Hardening

Beam Hardening (Metal Lead)

Streak Artifact (also associated with metal)

Beam Hardening

Limitations

Volume Averaging ("blooming artifact")

Pitfalls

MIP Pitfall

MIP Pitfall

0.67 mm image

MIP Pitfall

Pitfalls

CMPR Pitfall

(Curved Multi-planar Reformation)

cMPR Pitfall

cMPR Pitfall: pseudostenosis

Pitfalls

VR Pitfall (Volume Rendering)

VR Pitfall

Lesion "severity" can be increased or decreased!

Volume rendered images are <u>not</u> reliable for evaluating stenosis severity.

Common Limitations and Pitfalls in Cardiac CT

Limitation or Pitfall	Result	Resolution
Inadequate HRM	Non-dx study	Re-medicate & repeat
Arrhythmia	Incomplete study	Edit ECG
Morbidly obese patient	Non-dx study	Adjust parameters, or do not scan
Heavy Calcification	Incomplete study	Do not scan
Stairstep artifact	Overcall	Recognize artifact
MIP pitfall	Undercall	Never use only axial images for diagnosis
MPR pitfall	Overcall	Use multiple MPR projections
3D Volume pitfall	Over or Undercall	Never use only 3D volume for diagnosis

Conclusions

Careful attention to patient preparation & image acquisition will help avoid artifacts

A systematic approach to case interpretation will help avoid pitfalls