Imaging & Physiology Summit: Clinical Data

CONTRAST FFR (cFFR)

Seoul, Korea, december 6th, 2014

Nico H. J. Pijls, MD, PhD Catharina Hospital, Eindhoven, The Netherlands

CONTRAST STUDY: Background

- When measuring FFR, for practical reasons it is advocated presently by some investigators to skip hyperemia
- This happens at the cost of diagnostic accuracy
- Contrast injections are intrinsic part of any diagnostic angiogram or PCI
- Contrast agent is known to induce short-lasting hyperemia, but is less well investigated as i.c. adenosine

P_d/P_a measurement after regular contrast injection could be more accurate and easier than relying upon resting indices like iFR and Pd /Pa at rest and specifically unmask significant stenosis missed by iFR (young patients, proximal lesions, large coron arteries)

CONTRAST FFR (cFFR)

several small studies:

	N	cut-off	accuracy
Leone, Eurointervention 2014	80 (104)	0.83	91%
Baptista, Eur H J 2014 (abstract)	66 (98)	0.84	91%
Spagnoli, Eurointervention 2014	47 (65)	0.85	88%

Notes: - accuracy compared to FFR of 0.80

- Leone and Baptista: cut-off by ROC, i.e. retrospectively, like resting indices

- Spagnoli: 2-step approach with prospective validation

cFFR (contrast FFR) is defined as Pd/Pa after a regular single bolus of contrast as routinely used in coronary angiography

Aims of the CONTRAST study:

- how close is *c*FFR to true FFR ? (with ic or iv adenosine)
- how reproducible is cFFR ?
- is cFFR more accurate to predict true FFR than the purely resting indices: Pd/Pa rest and iFR
- reproducibility of all these indexes

CONTRAST STUDY: PATIENTS

- 750 patients > 18 years old, who undergo FFR for whatsoever reason
- no extremely calcified, tortuous vessels no previous CABG
- enrollment in sept-nov 2014: 319 patients expected to be completed march 2015 and to be presented at PCR

- equalization with pressure sensor at tip of guiding, whereafter positioning of sensor at desired place
- one long recording (14 minutes) as follows

- equalization with pressure sensor at tip of guiding, whereafter positioning of sensor at desired place
- one long recording (14 minutes) as follows

- equalization with pressure sensor at tip of guiding, whereafter positioning of sensor at desired place
- one long recording (14 minutes) as follows

- equalization with pressure sensor at tip of guiding, whereafter positioning of sensor at desired place
- one long recording (14 minutes) as follows

- equalization with pressure sensor at tip of guiding, whereafter positioning of sensor at desired place
- one long recording (14 minutes) as follows

- equalization with pressure sensor at tip of guiding, whereafter positioning of sensor at desired place
- one long recording (14 minutes) as follows

- equalization with pressure sensor at tip of guiding, whereafter positioning of sensor at desired place
- one long recording (14 minutes) as follows

- equalization with pressure sensor at tip of guiding, whereafter positioning of sensor at desired place
- one long recording (14 minutes) as follows

- equalization with pressure sensor at tip of guiding, whereafter positioning of sensor at desired place
- one long recording (14 minutes) as follows

- equalization with pressure sensor at tip of guiding, whereafter positioning of sensor at desired place
- one long recording (14 minutes) as follows

- equalization with pressure sensor at tip of guiding, whereafter positioning of sensor at desired place
- one long recording (14 minutes) as follows

- equalization with pressure sensor at tip of guiding, whereafter positioning of sensor at desired place
- one long recording (14 minutes) as follows

Male patient, 62 y old, angina class 3. *Prox LAD: 50-70% IM branch: 80% MOCX: 50%*

male, 62-year-old, 80% stenosis in large IM branch

overview of the different steps of protocol

Detail #1: resting and contrast injection

Detail #2: resting and i.v. adenosine

iFR_{1,2} = 0.90 → 0.85

"true" FFR_{1,2} = 0.71 → 0.72

 $cFFR_{1,2} = 0.75 \longrightarrow 0.74$

A pilot study in 40 patients was performed to test the protocol (Contrast Pilot)

Best cut off for cFFR (compared to FFR of 0.80): 0.83

Sensitivity: 97% Specificity: 91%

Note: by ROC analysis, i.e. retrospectively

Contrast Pilot N=40

Best cut off: 0.83 Sensitiviteit: 97% Specificiteit: 91%

	FFR ≤ 80	FFR > 0,8	
cFFR ≤0,83	29	1	30
cFFR >0,83	1	11	12
	30	12	42

Advantages of Pd/Pa contrast (cFFR) compared to iFR

- no ECG needed; easier to perform
- no specific software needed, can be used with every pressure wire &interface
- no particular steady state needed (independant of resting conditions or hyperemia)
- significantly higher accuracy than Pd/Pa at rest and iFR in pilot-studies

Diagnostic performance of Coronary diagnostic tests for functional significant (FFR ≤ 0.80) disease

Correct Classification of Ischemic Stenosis

100 % certainty (holy grail)

Correct Classification of Ischemic Stenosis

100 % certainty (holy grail)

FFR Contrast cFFR resting Pd/Pa, iFR, angiography

CONTRAST STUDY: Results

- enrollment in sept-nov 2014: 319 patients
- expected to be completed (750 patients) march 2015
- promising results in pilot study
- not suitable for complex cases and pullback recordings, but well to do in simple cases
- study results will be presented at PCR 2015

Stent in LAD (3.0 x 18) Stent in IM branch (3.0 x 12) FFR LAD after stent: 0.92 FFR IM after stent: 0.95

True "resting" conditions are difficult to obtain......and definitely more difficult than hyperemia!!!!!!