#### TCTAP Seoul 2013

## CABG in Diabetic Patients: No Doubt, Surgery is Clearly the Winner!

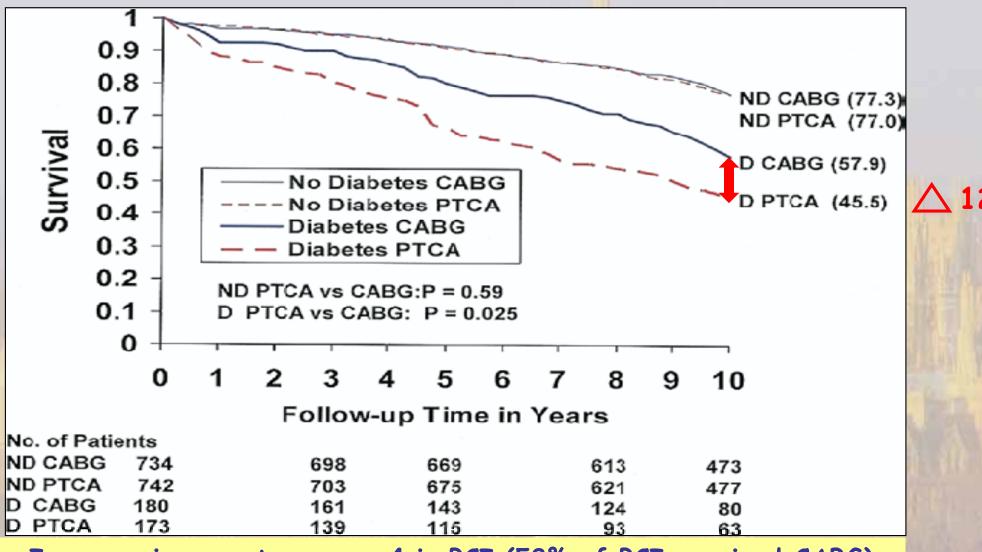
# David P Taggart MD PhD FRCS Professor of Cardiovascular Surgery, University of Oxford



#### Conflicts of Interest:

- (i) Clinical: Cardiac Surgeon
- (ii) Commercial: Consultant to Medtronic, Abbott, AstraZeneca, Novadaq, VGS, Cardioguard

#### Diabetes Mellitus (DM): A Growing Epidemic


- 24 million DM in USA, > 170 million worldwide
- O WHO estimate DM will double by 2030
- O 4-6 fold increase in adverse cardiovascular events
- ODM present in >25% CABG and >30% ACS patients
- O In DM 75% of deaths, 80% hospital admissions are CVS

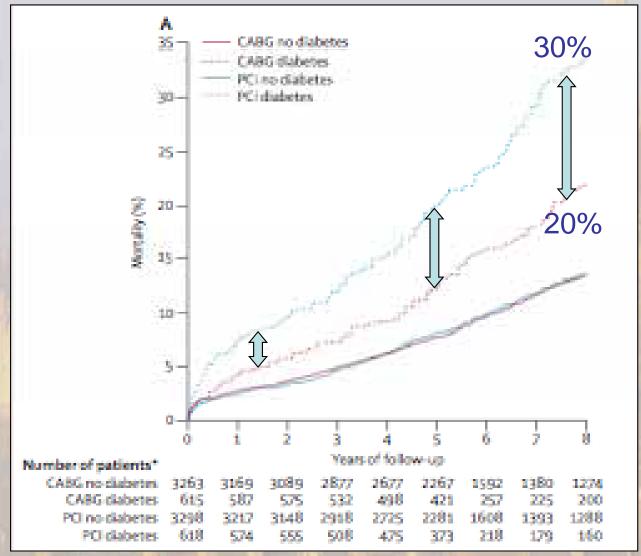
# The Final 10-Year Follow-Up: Results From the BARI Randomized Trial The BARI Investigators\* [J Am Coll Cardiol 2007;49:1600–6]

01829 patients: (12% of potentially eligible population)

O353 diabetic patients: (19% of All BARI patients)

OLow Severity CAD: 41% 3vCAD; 31% proximal LAD; normal LV function




Increase in repeat revasc x4 in PCI (58% of PCI received CABG) On ITT analyses this 'reduces' the real survival benefit of CABG

Coronary artery bypass surgery compared with percutaneous coronary interventions for multivessel disease: a collaborative analysis of individual patient data from ten randomised trials

Lancet 2009

Mark A Harry, Joseph Boy, brand, Elect A Brownto, Frie Bossma, Jos Blor, Paria Marcoks, Picker Corrie Time Classon, Marcos Father, Classica, Wilder, Jacobskir, She di November 11 Despet Corried St. October 2

Kathryn M McDonald, Alfredo Rodriguez, Patrick Serruys, Ulrich Sigwart, Rodney H Stables, Dauglas K 🐭 ens, Stuart J Pocock



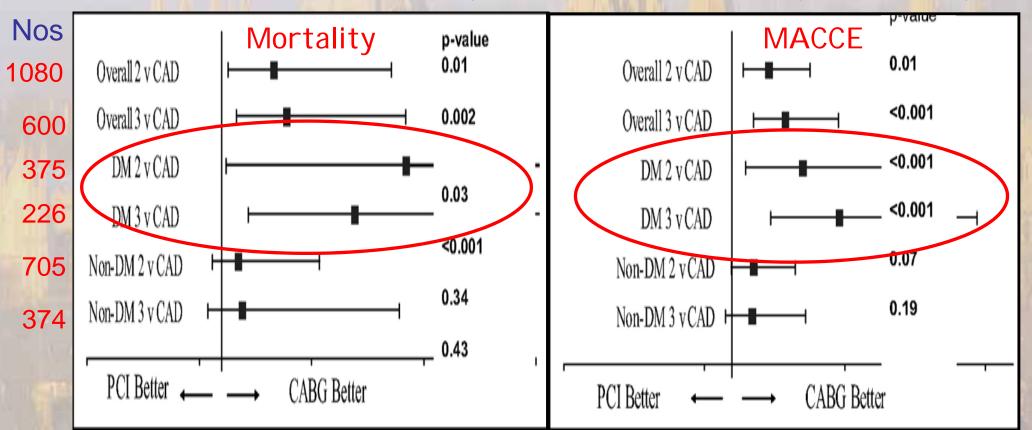
- **OOVERALL**
- O7812 patients
- OMedian follow up 6 years
- O65%: 1 or 2 VD; all normal LV
- OHR CABG: 0.91: p=0.12

- O1233 patients with DM
- OHR for CABG vs PCI in DM 0.70; p=0.01
- OSurvival benefit of CABG increases with time

#### ORIGINAL ARTICLE

#### Long-Term Outcomes of Coronary-Artery Bypass Grafting versus Stent Implantation

Edward L. Hannan, Ph.D., Michael J. Racz, Ph.D., Gary Walford, M.D.,
Robert H. Jones, M.D., Thomas J. Ryan, M.D., Edward Bennett, M.D.,
Alfred T. Culliford, M.D., O. Wayne Isom, M.D., Jeffrey P. Gold, M.D.,
and Eric A. Rose, M.D.


NEJM 2005

| HR for DEATH with DM at Median 3 Years Follow-up: CABG vs stents |              |            |      |                               |  |
|------------------------------------------------------------------|--------------|------------|------|-------------------------------|--|
|                                                                  |              | DM (18029) |      |                               |  |
|                                                                  | LAD disease  | PCI        | CABG | HR                            |  |
| 2VD<br>(7780)                                                    | None         | 1352       | 423  | 0.69 (0.46-1.03)              |  |
|                                                                  | Non proximal | 1485       | 610  | 0.59 (0.40-0.87)              |  |
| (1700)                                                           | Proximal     | 1438       | 2472 | 0.71 (0.57-0.88)              |  |
| 3VD                                                              | Non proximal | 666        | 1824 | 0.65 (0.49-0.85)              |  |
| (10249)                                                          | Proximal     | 644        | 7115 | <mark>0.69</mark> (0.55-0.86) |  |

#### Routine clinical practice in DM: PCI vs CABG

Survival of Patients With Diabetes and
Multivessel Coronary Artery
Disease After Surgical or Percutaneous
Coronary Revascularization:
Results of a Large Regional Prospective Study
Nathaniel W. Niles, MD,\* Paul D. McGrath, MD, FACC,† David Malenka, MD, FACC,\*

#### Javaid et al. [Circ 2007] 1680 patients DES vs CABG 1 year follow up



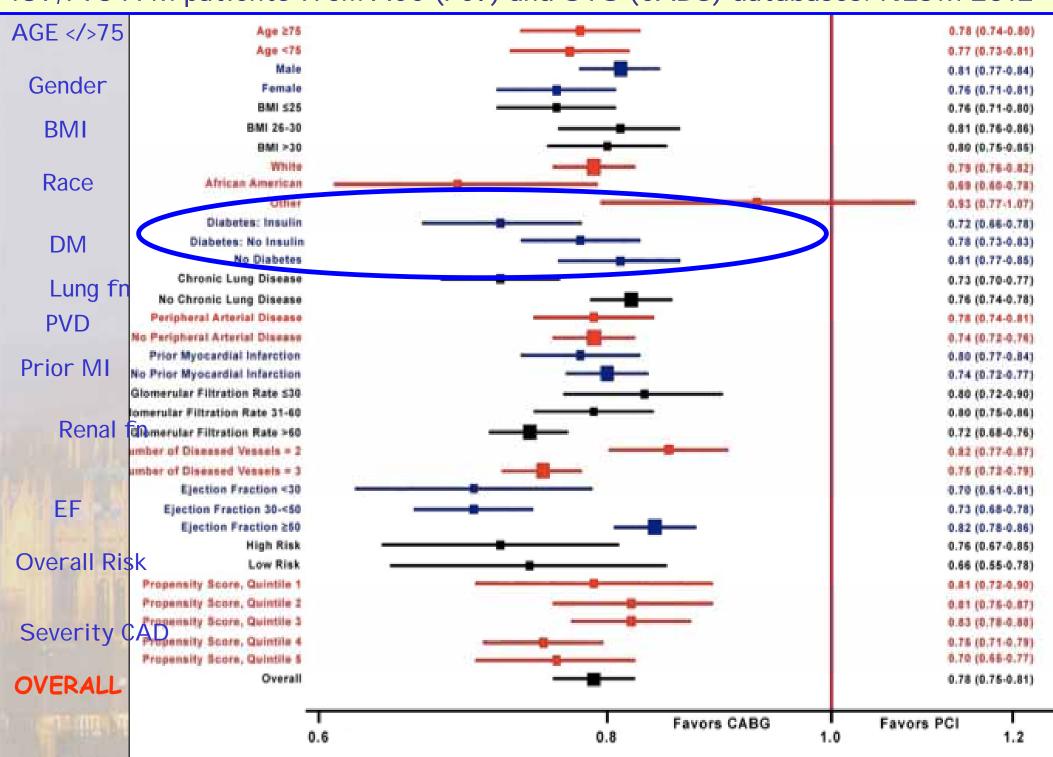
<sup>&</sup>lt;sup>2766</sup> risk matched DIABETICS: PCI ↑ 5 yr mortality x 2 - 4

# The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JANUARY 24, 2008

VOL. 358 NO. 4


## Drug-Eluting Stents vs. Coronary-Artery Bypass Grafting in Multivessel Coronary Disease

Edward L. Hannan, Ph.D., Chuntao Wu, M.D., Ph.D., Gary Walford, M.D., Alfred T. Culliford, M.D., Jeffrey P. Gold, M.D., Craig R. Smith, M.D., Robert S.D. Higgins, M.D., Russell E. Carlson, M.D., and Robert H. Jones, M.D.

Table 3. Hazard Ratios for Death and for Death or Myocardial Infarction after CABG and after Treatment with a Drug-Eluting Stent, According to Selected Subgroups of Patients.\*

| Variable               | No. of<br>Patients | Mean<br>Follow-up | Death            |                                    |         | Dea              | Death or Myocardial Infarction     |         |  |
|------------------------|--------------------|-------------------|------------------|------------------------------------|---------|------------------|------------------------------------|---------|--|
|                        |                    |                   | No. of<br>Events | Adjusted Hazard<br>Ratio (95% CI)† | P Value | No. of<br>Events | Adjusted Hazard<br>Ratio (95% CI)† | P Value |  |
|                        |                    | mo                |                  |                                    |         |                  |                                    |         |  |
| Diabetes               |                    |                   |                  |                                    |         |                  |                                    |         |  |
| CABG                   | 2844               | 18.9              | 242              | 0.97 (0.77-1.20)                   | 0.75    | 304              | 0.84 (0.69-1.01)                   | 0.07    |  |
| Stent                  | 3256               | 18.5              | 224              | Reference                          |         | 343              | Reference                          |         |  |
| Ejection fraction <40% |                    |                   |                  |                                    |         |                  |                                    |         |  |
| CABG                   | 1614               | 18.6              | 181              | 0.77 (0.59-1.00)                   | 0.05    | 213              | 0.67 (0.53-0.84)                   | < 0.001 |  |
| Stent                  | 1059               | 17.8              | 144              | Reference                          |         | 183              | Reference                          |         |  |
| Age ≥80 yr             |                    |                   |                  |                                    |         |                  |                                    |         |  |
| CABG                   | 760                | 18.0              | 107              | 0.74 (0.55-1.00)                   | 0.05    | 125              | 0.74 (0.56-0.96)                   | 0.03    |  |
| Stent                  | 1266               | 17.8              | 175              | Reference                          |         | 216              | Reference                          |         |  |

#### 189,793 PPM patients from ACC (PCI) and STS (CABG) databases: NEJM 2012



#### **BARI 2D: [NEJM 2009]**

- (i) optimal medical therapy vs prompt revascularization (prespecified to PCI/CABG)
- (ii) Insulin vs oral hypoglycaemics

| 2368 patients (2001-05) | PCI (1605)    | CABG (763)    |  |
|-------------------------|---------------|---------------|--|
| Age (sd) [% male]       | 62 (9); [68%] | 63 (8); [76%] |  |
| DM (years); [% insulin] | 10(9); [31%]  | 11(8); [22%]  |  |
| Unstable; prior revasc  | 11% 29%       | 7%; 13%       |  |
| 3 vessel disease        | 20%           | 52%           |  |
| Significant LAD disease | 10%           | 19%           |  |
| Ejection Fraction       | 57 (11)       | 57 (11)       |  |

|                           | Medical | PCI   | Medical | CABG   |
|---------------------------|---------|-------|---------|--------|
|                           | 807     | 798   | 385     | 378    |
| 5 years Death             | 11.9%   | 12.8% | 16.9%   | 14%    |
| 5 years MI                | 10.2%   | 11.3% | 14.6%   | 7.4%*  |
| 5 years Stroke            | 2.9%    | 2.9%  | 2.6%    | 1.9%   |
| 5 years Death, MI, Stroke | 20.8%   | 23.4% | 29.9%   | 20.9%* |

By 5 years 42% of medical group required revascularization (ITT analyses!)

OOverall Low severity CAD (NO Registry Data: what % of all DM enrolled?)
OPCI had no benefit over medical treatment but CABG (prespecified) did

OHigh risk of subsequent revascularization in medical group (42%)

# Randomized Comparison of PCI with CABG in Diabetic Patients: 1 Year Results of the CARDia Trial. JACC 2010

O510 of 600 patients recruited over 5 years: 'early termination due to slow recruitment'

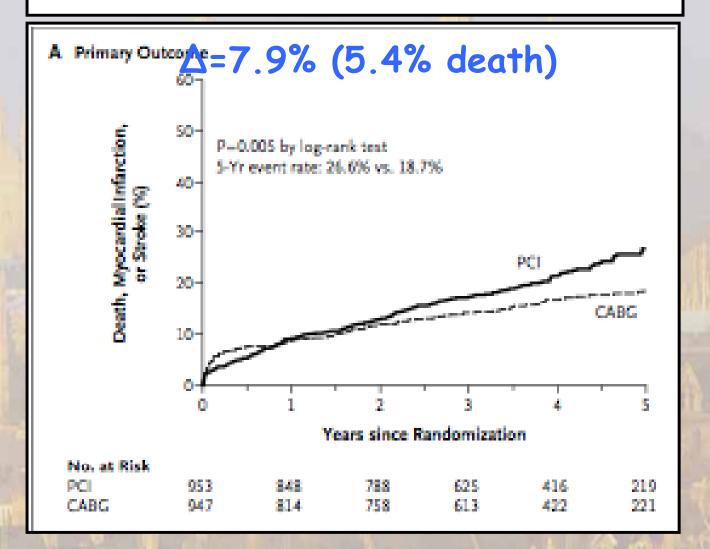
|                     | PCI (256)      | CABG (254)     |
|---------------------|----------------|----------------|
| Age (% male)        | 64 (71%)       | 64 (78%)       |
| urgent              | 22%            | 24%            |
| Insulin dependent   | 31% (10 years) | 31% (10 years) |
| 3vd                 | 65%            | 58%            |
| EF                  | 59%            | 60%            |
|                     |                |                |
| Death               | 3.2%           | 3.3%           |
| WI                  | 8.4%           | 5.7% (Δ -32%)  |
| CVA                 | 0.4%           | 2.5%           |
| 1 year death/MI/CVA | 11.6%          | 10.2%          |
| Revascularization   | 12%            | 2%             |
| Composite           | 18%            | 11%            |

ONo Registry Data (what % of diabetic patients enrolled?)

\*Approx 26000 DM had CABG in same period in UK ie <0.5% enrolled

#### Treatment of Complex Coronary Artery Disease in Patients with Diabetes:

# 5-Year Results Comparing Outcomes of Bypass Surgery and Percutaneous Coronary Intervention in the SYNTAX Trial EJCTS 2013


A. Pieter Kappetein<sup>1</sup>, Stuart J. Head<sup>1</sup>, Marie-Claude Morice<sup>2</sup>, Adrian P. Banning<sup>3</sup>, Patrick W. Serruys<sup>4</sup>,

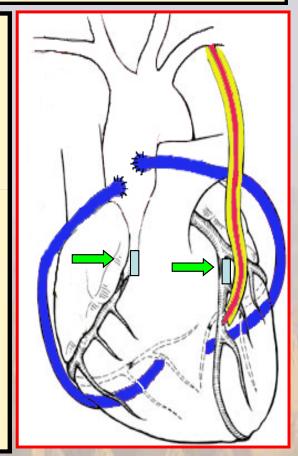
Friedrich-Wilhelm Mohr<sup>3</sup>, Keith D. Dawkins<sup>6</sup>, Michael J. Mack<sup>7</sup>, on behalf of the SYNTAX Investigators.

|                                    | DM=452   |          |        |
|------------------------------------|----------|----------|--------|
|                                    | CABG=221 | PCI =231 |        |
| MACCE %                            | 29       | 47       | <0.001 |
| All cause death/stroke/MI %        | 19       | 24       | 0.26   |
| All death %                        | 13       | 20       | 0.06   |
| Cardiac death %                    | 6.5      | 13       | 0.03   |
| Stroke %                           | 4.7      | 3        | 0.34   |
| MI %                               | 5.4      | 9        | 0.20   |
| Repeat Revascularization %         | 15       | 35       | <0.001 |
| Repeat PCI %                       | 13       | 29       | <0.001 |
| Repeat CABG %                      | 1.9      | 8.7      | 0.004  |
| Graft Occlusion/stent thrombosis % | 4.3      | 5.3      | 0.61   |

#### ORIGINAL ARTICLE

## Strategies for Multivessel Revascularization in Patients with Diabetes




## **Fundamental Question**

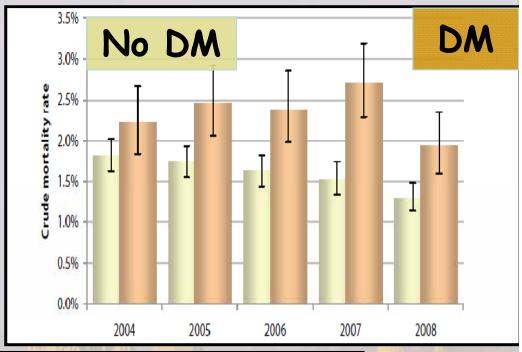
WHY DOES CARG HAVE SUCH A SURVIVAL BENIEFIT OVER PCL ?

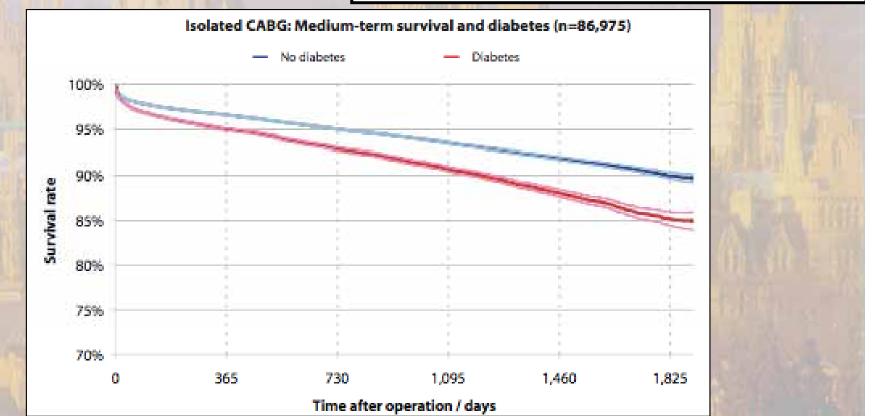
Anatomically, atheroma is mainly located in the proximal coronary arteries

During CABG placing bypass grafts to the MID CORONARY VESSEL has TWO effects

- (i) Complexity of 'CULPRIT' lesion irrelevant
- (ii) over the long term, CABG offers prophylaxis against <a href="FUTURE">FUTURE</a> 'culprit' lesions by protecting whole zones of vulnerable proximal myocardium in diffusely unstable coronary endothelium
- In contrast, PCI with stents ([) only treats 'SUITABLE' localised proximal 'culprit' lesions but has NO PROPHYLACTIC BENEFIT against new disease (proximal to, within or distal to the stent) which nullifies the benefit of the stent




- 2. PCI means incomplete revascularization (Hannan Circ 2006)
  - Of 22,000 PCI 69% had incomplete revascularization
  - >2 vessels (+/- CTO) HR for mortality 1.4 (95% CI = 1.1-1.7)


PCI will 'never' match the results of CABG for LM/MVD (POBA; BMS; DES)



#### 6<sup>th</sup> UK and Ireland SCTS Database (2009)

|       |               | MORTALITY |          |  |
|-------|---------------|-----------|----------|--|
|       | 5 yr: 2004-08 | All       | Elective |  |
| Total | 114300        | 1.8%      | 1.1%     |  |
| NonDM | 88280 (77%)   | 1.6%      | 1.0%     |  |
| DM    | 26020 (23%)   | 2.6%      | 1.6%     |  |

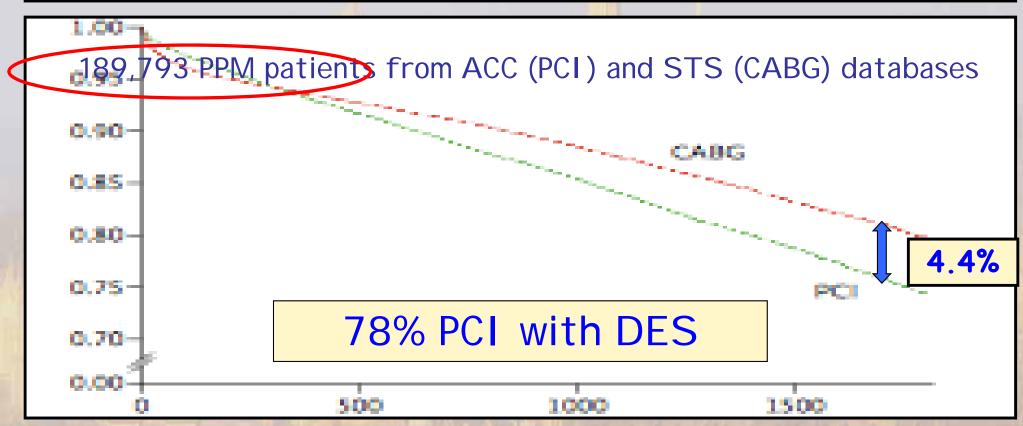




### Summary and Conclusions: CABG vs PCI in DM

- O All evidence from RCTs and Propensity Matched Registries consistently confirm that CABG vs PCI results in
- better survival (by at least 5% at 5 years)
- reduced MI (by at least 50% at 5 years)
- ✓ reduced repeat revascularization (by at least 50% at 5 years)

#### Summary and Conclusions


- O All evidence from RCTs and Propensity Matched Registries confirm that CABG results in better survival and reduced MI and repeat revasc vs PCI
- O Strongest RCT evidence from Hlatky collaborative analyses
- Significant survival benefit for DM with CABG at 6 years (HR 0.7)
- O Propensity Matched Registry Data (reflecting real clinical practice) consistently show survival benefit of CABG over PCI in DM
- O BARI 2D (low severity of CAD)
- No benefit of PCI vs OMT
- CABG reduced risk of MI (and also reduced absolute mortality by3%)
- O SYNTAX trial showed that at 5 years DM patients have better survival, reduced MI and repeat revasc with CABG vs PCI
- O FREEDOM trial confirms 5% survival benefit of CABG
- O In ALL 78,000 elective CABG patients in UK (2004-08) 1.1% mortality
- O Survival benefit of CABG vs stents accrues with time

#### The NEW ENGLAND JOURNAL OF MEDICINE NEJM 2012

#### ORIGINAL ARTICLE

#### Comparative Effectiveness of Revascularization Strategies

William S. Weintraub, M.D., Maria V. Grau-Sepulveda, M.D., M.P.H.,



- ✓At 4 years CABG increases survival by 4.4%: HR 0.79 (0.76-0.82)
- ✓ Survival benefit of CABG increases with time

## THE SYNTAX TRIAL

# The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

MARCH 5, 2009

VOL. 360 NO. 10

Percutaneous Coronary Intervention versus Coronary-Artery Bypass Grafting for Severe Coronary Artery Disease

Patrick W. Serruys, M.D., Ph.D., Marie-Claude Morice, M.D., A. Pieter Kappetein, M.D., Ph.D.,

Landmark trial (of 5 year outcomes of PCI vs CABG)
'All comer' trial (vs highly select patients in all previous RCTs)Nested Parallel Registry (35% of patients straight to

CADCIII

Comparison of coronary bypass surgery with drug-eluting stenting for the treatment of left main and/or three-vessel disease: 3-year follow-up of the SYNTAX trial

Arie Pieter Kappetein 1\*, Ted E. Feldman 2, Michael J. Mack 3, Marie-Claude Morice 4,

# The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JUNE 11, 2009

VOL. 360 NO. 24

#### A Randomized Trial of Therapies for Type 2 Diabetes and Coronary Artery Disease

The BARI 2D Study Group\*

The NEW ENGLAND JOURNAL of MEDICINE

#### EDITORIALS



Diabetes with Coronary Disease — A Moving Target amid Evolving Therapies?

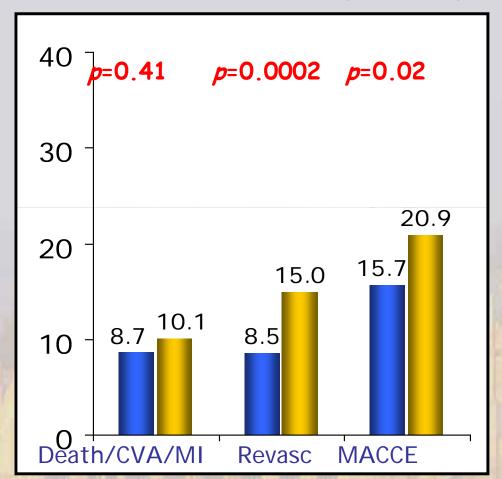
William E. Boden, M.D., and David P. Taggart, M.D., Ph.D.

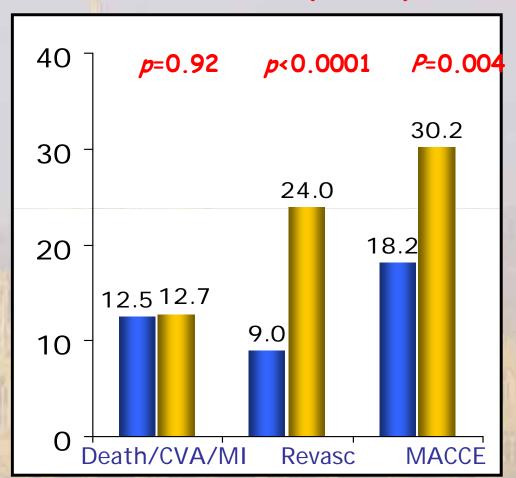
#### Guidelines on myocardial revascularization

## 9.1.2 Type of intervention: coronary artery bypass grafting vs. percutaneous coronary intervention

All RCTs have shown higher rates of repeat revascularization procedures after PCI, compared with CABG, in diabetic patients. <sup>29</sup> A recent meta-analysis on individual data from 10 RCTs of elective myocardial revascularization <sup>29</sup> confirms a distinct survival advantage for CABG over PCI in diabetic patients. Five-year mortality was 20% with PCI, compared with 12.3% with CABG (OR 0.70, 95% CI 0.56—0.87), whereas no difference was found for non-diabetic patients; the interaction between diabetic status and type of revascularization was significant. The AWESOME trial <sup>113</sup> randomized high-risk patients

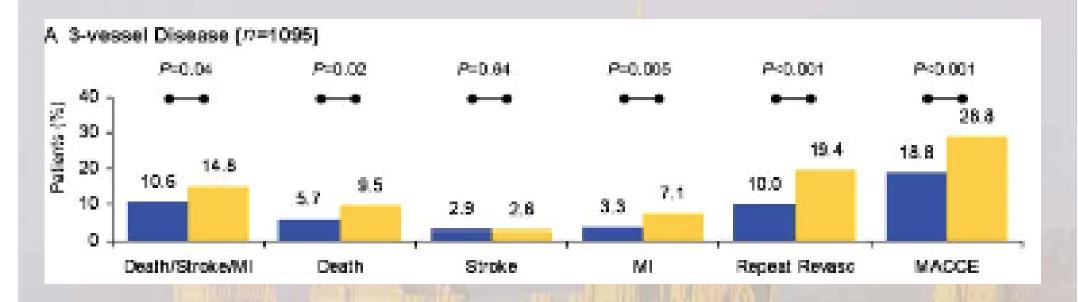


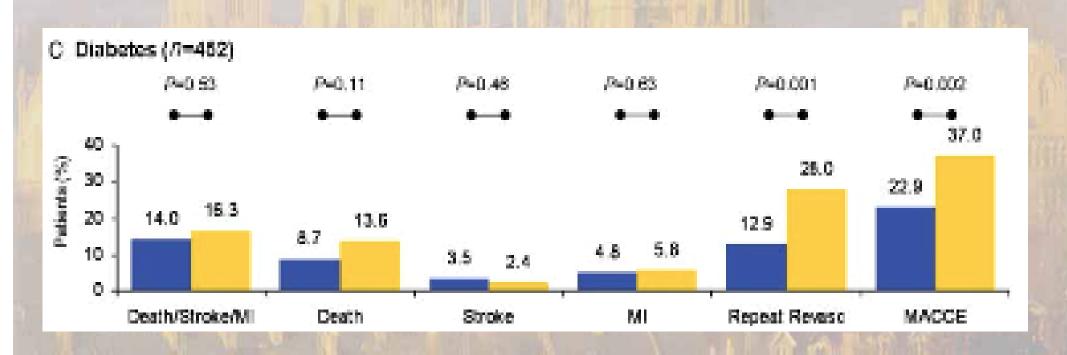


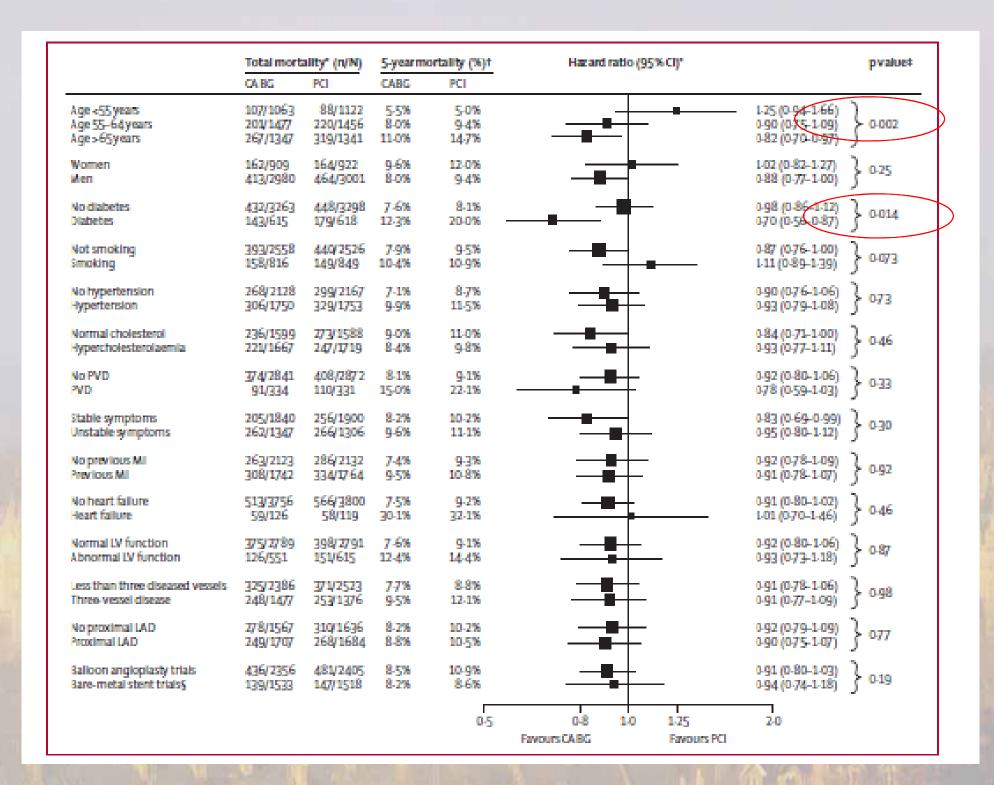


#### SYNTAX: 2 year outcome DIABETES vs NO DIABETES

■ CABG ■ TAXUS

NON DIABETIC (n=1348)


DIABETIC (n=452)




ODM do worse on all outcomes ORevasc and MACCE higher for PCI in both nonDM and even> in DM

### SYNTAX 3 YRS







| ubgroup                           | All Patients     | Patients<br>with Diabetes | Patients<br>with Ejection<br>Fraction <40% | Patients<br>with Ejection<br>Fraction ≥40%↑ |
|-----------------------------------|------------------|---------------------------|--------------------------------------------|---------------------------------------------|
| wo-vessel disease                 |                  |                           |                                            |                                             |
| No disease of LAD artery          |                  |                           |                                            |                                             |
| No. of patients                   |                  |                           |                                            |                                             |
| Stenting group                    | 5,847            | 1352                      | 451                                        | 5,396                                       |
| CABG group                        | 1,309            | 423                       | 212                                        | 1,097                                       |
| Unadjusted hazard ratio (95% CI)  | 1.29 (1.02-1.62) | 0.95 (0.65-1.37)          | 1.09 (0.70-1.72)                           | 1.18 (0.90-1.56)                            |
| Adjusted hazard ratio (95% CI)    | 0.75 (0.58-0.98) | 0.69 (0.46-1.03)          | 0.95 (0.59-1.52)                           | 0.69 (0.51-0.93)                            |
| Disease of nonproximal LAD artery |                  |                           |                                            |                                             |
| No. of patients                   |                  |                           |                                            |                                             |
| Stenting group                    | 5,891            | 1485                      | 610                                        | 5,281                                       |
| CABG group                        | 1,690            | 513                       | 278                                        | 1,412                                       |
| Unadjusted hazard ratio (95% CI)  | 1.05 (0.84-1.31) | 0.70 (0.48-1.02)          | 1.15 (0.78-1.69)                           | 0.89 (0.68-1.18)                            |
| Adjusted hazard ratio (95% CI)    | 0.76 (0.60-0.96) | 0.59 (0.40-0.87)          | 1.01 (0.67-1.55)                           | 0.67 (0.50-0.89)                            |
| Disease of proximal LAD artery    |                  |                           |                                            |                                             |
| No. of patients                   |                  |                           |                                            |                                             |
| Stenting group                    | 6,033            | 1438                      | 803                                        | 5,230                                       |
| CABG group                        | 8,410            | 2472                      | 1615                                       | 6,795                                       |
| Unadjusted hazard ratio (95% CI)  | 0.97 (0.85-1.10) | 0.87 (0.71-1.07)          | 0.70 (0.56-0.87)                           | 1.00 (0.86-1.18)                            |
| Adjusted hazard ratio (95% CI)    | 0.75 (0.66-0.86) | 0.71 (0.57-0.88)          | 0.64 (0.51-0.81)                           | 0.82 (0.69-0.97)                            |
| Three-vessel disease              |                  |                           |                                            |                                             |
| Disease of nonproximal LAD artery |                  |                           |                                            |                                             |
| No. of patients                   |                  |                           |                                            |                                             |
| Stenting group                    | 2,166            | 666                       | 342                                        | 1,824                                       |
| CABG group                        | 4,946            | 1824                      | 1196                                       | 3,750                                       |
| Unadjusted hazard ratio (95% CI)  | 0.89 (0.74-1.06) | 0.77 (0.59-0.99)          | 0.61 (0.46-0.81)                           | 0.94 (0.75-1.17)                            |
| Adjusted hazard ratio (95% CII)   | 0.74 (0.62-0.90) | 0.65 (0.49-0.85)          | 0.64 (0.48-0.87)                           | 0.76 (0.60-0.96)                            |
| Disease of proximal LAD artery    |                  |                           |                                            |                                             |
| No. of patients                   |                  |                           |                                            |                                             |
| Stenting group                    | 2,165            | 644                       | 399                                        | 1,766                                       |
| CABG group                        | 20,857           | 7115                      | 5597                                       | 15,260                                      |
| Unadjusted hazard ratio (95% CI)  | 0.67 (0.59-0.77) | 0.66 (0.53-0.81)          | 0.55 (0.44-0.69)                           | 0.64 (0.53-0.76)                            |
| Adjusted hazard ratio (95% CI)    | 0.64 (0.56-0.74) | 0.69 (0.55-0.86)          | 0.68 (0.54-0.85)                           | 0.60 (0.50-0.72                             |