TCTAP 2019 Seoul, April 27 -30, 2019

# Cerebral Protection in TAVR: Which Patient Category or Anatomical Subset?

Eberhard Grube, MD, FACC, FSCAI University Hospital, Dept of Medicine II, Bonn, Germany Stanford University, Palo Alto, California, USA

#### Disclosure Eberhard Grube, MD

Speaker Bureau/Advisory Board: Medtronic: C, SB, AB, OF

LivaNova: C, SB, AB

Highlife: AB, SB

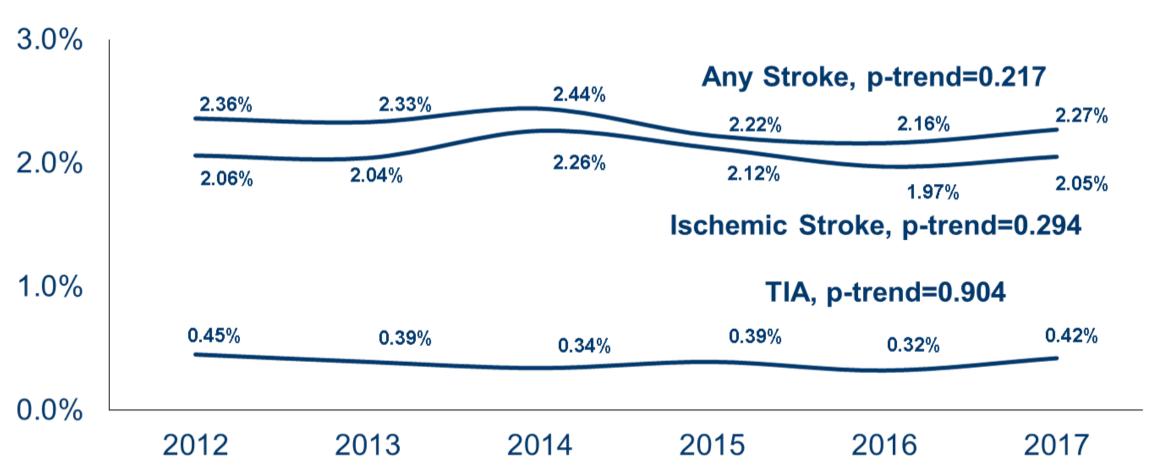
Boston Scientific: C, SB, AB

Jena Valve: C,SB, AB CardioMech: C, AB

Mitral Technology: C, SB, AB

Equity Interest: InSeal Medical: E, AB,

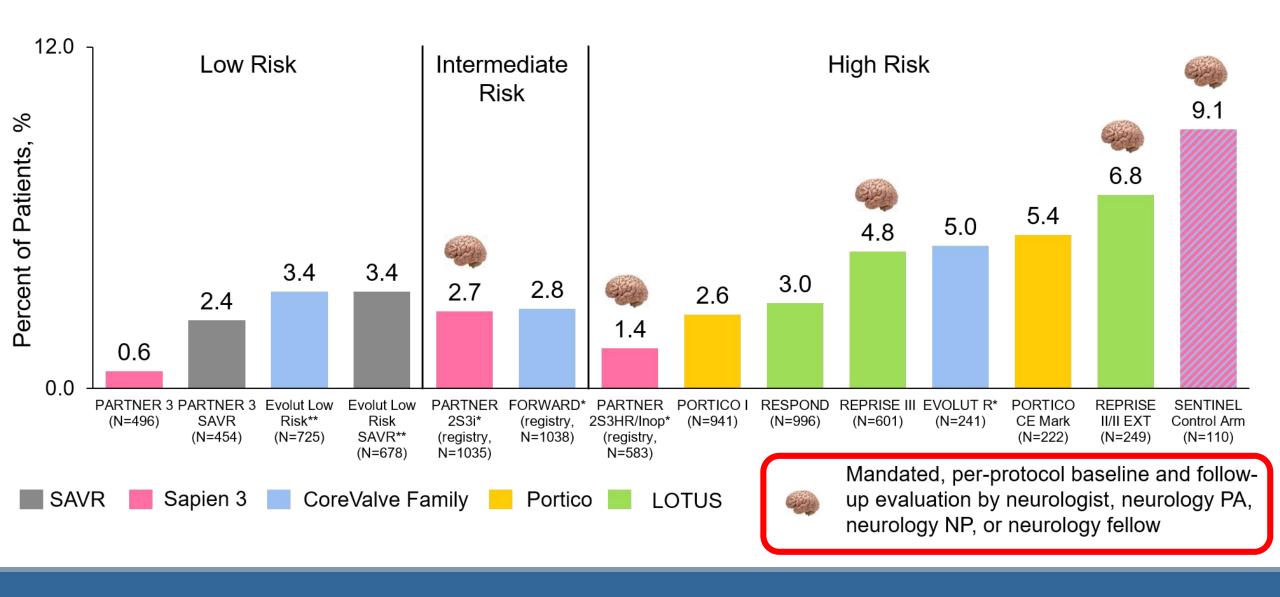
MTEx: E, AB, SB Cardiovalve: E, SB,


Claret: E, AB

Shockwave: E, AB Valve Medical: E, AB Millipede E, AB, SB Pie-Cardia: E, AB, SB

Imparative Medical: E, AB

Ancora: E, AB, SB


#### Real-World Results Demonstrate that Stroke Remains an Issue with TAVR



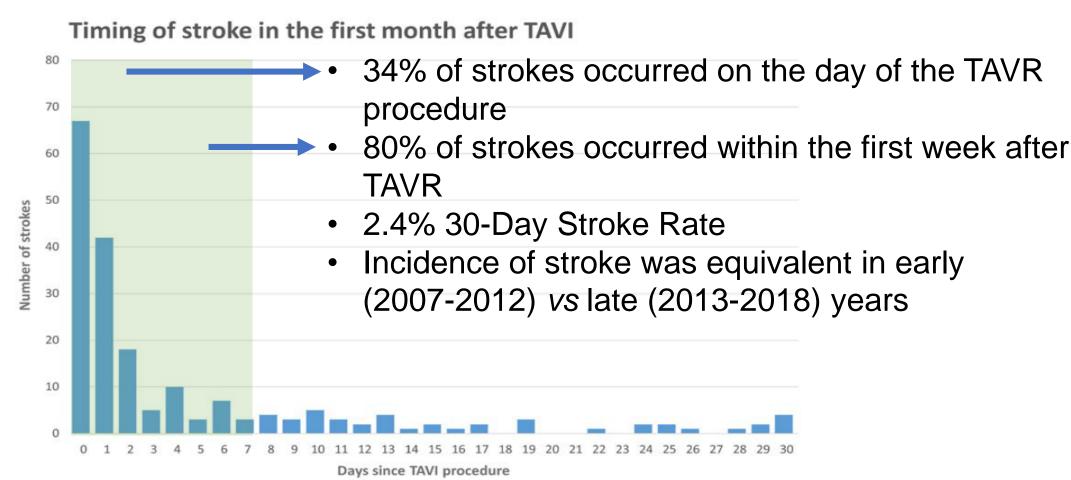
\*2017 data through May

Data from the STS/ACC TVT Registry: 2290 30-day strokes reported among N=101,430 patients who underwent TAVR at 521 US sites from Nov 2011 – June 2017

### **Stroke Rates Problematic Amongst Contemporary TAVR Trials**



# Stroke is Associated with Significant Increases in 30-Day Outcomes including Mortality in the CENTER Collaboration


|                                    | No Stroke at 30 d<br>(n=10721) | Stroke at 30 d<br>(n=261) | OR (95% CI)    | P Value |
|------------------------------------|--------------------------------|---------------------------|----------------|---------|
| Mortality                          | 570 (5%)                       | 61 (25%)                  | 6.0 (4.4–8.1)  | <0.001  |
| Major or life-threatening bleeding | 592 (7%)                       | 24 (12%)                  | 1.9 (1.3–3.0)  | 0.003   |
| Myocardial infarction              | 71 (0.9%)                      | 2 (0.8%)                  | 1.2 (0.3–5.0)  | 0.79    |
| New-onset atrial fibrillation      | 51 (3%)                        | 5 (16%)                   | 5.2 (1.9–14.1) | 0.001   |
| Permanent pacemaker implantation   | 1178 (14%)                     | 24 (14%)                  | 1.0 (0.6–1.5)  | 0.81    |

Incidence and OR (95% CI). OR indicates odds ratio.

Independent predictors of stroke at 30 days: 1. History of cerebrovascular events/TIA and 2. Glomerular filtration rate of <30 mL/min per 1.73m<sup>2</sup>.

N=10982 patients undergoing TF-TAVR with Edwards' balloon-expandable valves or Medtronic self-expanding valves between 2007-2018 from 3 national registries and 7 local registries or prospective clinical trials

### CENTER Collaboration Demonstrated that 80% of TAVR-Related Stroke Occurred in the First Week After TAVR



N=10982 patients undergoing TF-TAVR with Edwards' balloon-expandable valves or Medtronic self-expanding valves between 2007-2018 from 3 national registries and 7 local registries or prospective clinical trials

### **Stroke Rates Not Declining with Newer Generation Valves**

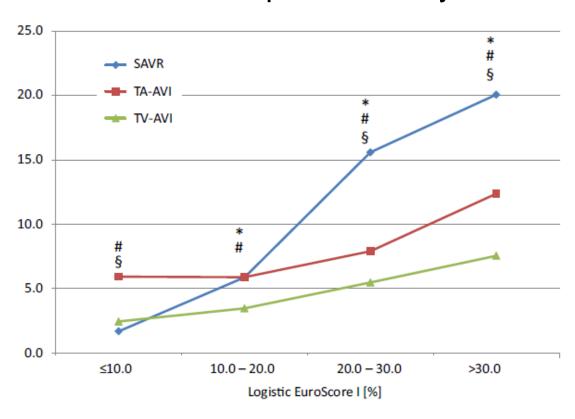
|                                         |           |           | Newer generation TAVI devices | Newer generation vs early generation |  |
|-----------------------------------------|-----------|-----------|-------------------------------|--------------------------------------|--|
|                                         |           | 8.00      | Crude                         |                                      |  |
|                                         | n=391     | n=391     | HR (95% CI)                   | P value                              |  |
| 30-day follow-up                        |           |           |                               |                                      |  |
| Early safety composite end point, n (%) | 83 (21.2) | 81 (20.8) | 0.98 (0.72 to 1.33)           | 0.876                                |  |
| All-cause death, n (%)                  | 19 (4.9)  | 15 (3.9)  | 0.80 (0.41 to 1.58)           | 0.519                                |  |
| Cardiovascular death, n (%)             | 18 (4.6)  | 11 (2.8)  | 0.62 (0.29 to 1.31)           | 0.210                                |  |
| CVE, n (%)                              | 17 (4.4)  | 17 (4.4)  | 1.00 (0.51 to 1.97)           | 0.989                                |  |
| Stroke                                  | 16 (4.1)  | 15 (3.9)  | 0.94 (0.47 to 1.91)           | 0.868                                |  |
| Disabling stroke                        | 14 (3.6)  | 9 (2.3)   | 0.64 (0.28 to 1.49)           | 0.301                                |  |
| Non-disabling stroke                    | 2 (0.5)   | 6 (1.6)   | 3.05 (0.61 to 15.09)          | 0.172                                |  |
| Transient ischaemic attack              | 1 (0.3)   | 2 (0.5)   | 2.02 (0.18 to 22.25)          | 0.567                                |  |
| Myocardial infarction, n (%)            | 2 (0.5)   | 2 (0.5)   | 1.00 (0.14 to 7.10)           | 1.000                                |  |
| All-cause death or CVE, n (%)           | 26 (6.7)  | 29 (7.5)  | 1.13 (0.66 to 1.91)           | 0.661                                |  |

Prospective, real-world registry with propensity-matched populations, 30-day safety and efficacy study of 782 patients undergoing TAVR between 2007 and 2016 at a single center in Switzerland. All adverse outcomes were adjudicated by an independent CEC. Early-generation devices: CoreValve, SAPIEN, SAPIEN XT. Newergeneration devices: SAPIEN 3, LOTUS, Evolut R

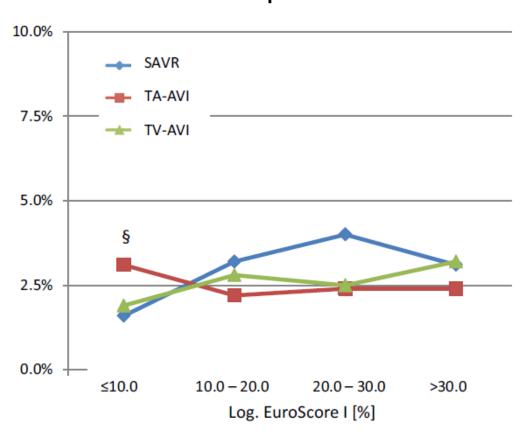
### Stroke Rate Not Decreasing with Number of Procedures Performed by a Team

#### **In-Hospital Outcomes for Elective TAVR**

- Retrospective observational study
- 8,771 TAVR procedures performed in the state of New York
- 5,916 elective TAVR procedures
- 207 operators
- Jan 2012- Dec 2016


|                      |                                   | By Volume Groups           |                                |                           |  |  |
|----------------------|-----------------------------------|----------------------------|--------------------------------|---------------------------|--|--|
|                      | All Patients (N = 5,916)          | Low (1-23)<br>(n = 1, 973) | Medium (24-79)<br>(n = 1, 860) | High (≥80)<br>(n = 2,083) |  |  |
| In-hospital death    | Trend toward lower mortality      |                            |                                |                           |  |  |
| Events (%)           | 115 (1.9%)                        | 53 (2.7%)                  | 32 (1.7%)                      | 30 (1.4%)                 |  |  |
| OR (95% CI)          | -                                 | Reference                  | 0.69 (0.42-1.13)               | 0.59 (0.32-1.08)          |  |  |
| Stroke               | No trend toward lower stroke rate |                            |                                |                           |  |  |
| Events (%)           | 94 (1.6%)                         | 29 (1.5%)                  | 37 (2.0%)                      | 28 (1.3%)                 |  |  |
| OR (95% CI)          | _                                 | Reference                  | 1.11 (0.63-1.95)               | 0.62 (0.30-1.30)          |  |  |
| Death, MI, or stroke | Significan                        | tly lower ris              | k for death, stro              | ke or acute MI            |  |  |
| Events (%)           | 202 (3.4%)                        | 79 (4.0%)                  | 68 (3.7%)                      | 55 (2.6%)                 |  |  |
| OR (95% CI)          | -                                 | Reference                  | 0.90 (0.62-1.31)               | 0.59 (0.37-0.93)          |  |  |

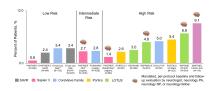
Events (%) and ORs from adjusted analyses are presented.


CI = confidence interval; MI = myocardial infarction; OR = odds ratio; TAVR = transcatheter aortic valve replacement.

# Stroke Not Associated with Surgical Risk Score in TAVR or SAVR

#### **In-Hospital Mortality**

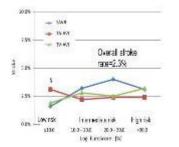



#### In-Hospital Stroke



20,340 patients receiving TAVR or SAVR in Germany in 2013

TA-AVI=transapical aortic valve implantation; TV-AVI=transvascular aortic valve implantation. Statistical significance (p\0.05) between groups are marked with asterisk for TV-AVI vs. SAVR; hash symbol for TV-AVI vs. TAAVI; section sign for TA-AVI vs. SAVR. Möllmann, H. et al. Clin Res Cardiol (2016) 105:553–559.


#### **Stroke in TAVR: Bottom Line**



• Stroke rates in real-world registries and contemporary trials range from ~1-9%.



- Rates are not declining with newer generation valves.<sup>1</sup>
- Stroke is independent of experience and operator volume.<sup>2-4</sup>



 Surgical risk score not associated with stroke risk in TAVR or SAVR.<sup>5-8</sup>

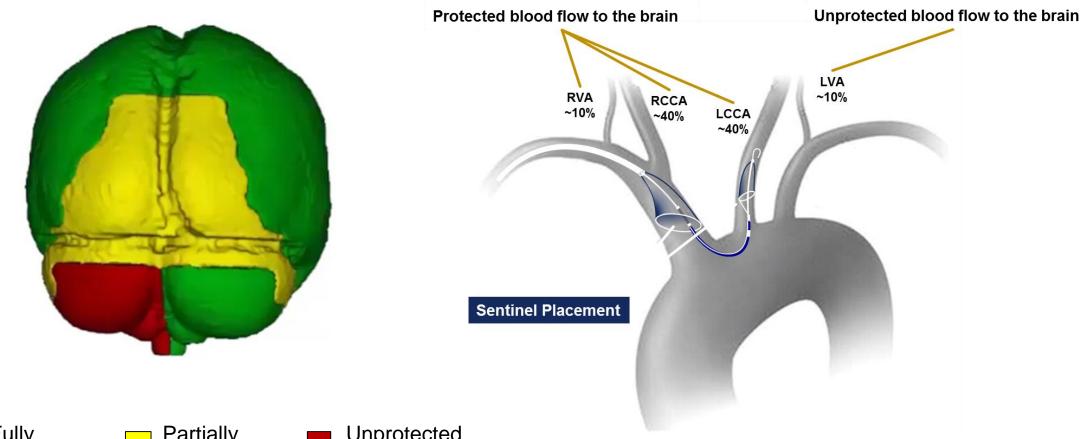
## What can be done to improve this?

# Cerebral Embolic Protection Devices to Reduce Peri-Procedural Strokes with TAVR

| Company<br>and<br>Product                   | Boston Scientific Sentinel                                | Keystone<br>TriGuard                                              | Edwards<br>Embrella                                               | ICS<br>Emblok                                                        | Transverse Point-Guard                                            |
|---------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|
| EU Status                                   | CE Mark<br>97% market share                               | CE Mark<br>3% market share                                        | CE Mark<br><3% market share                                       | FIM first clinical case<br>March 15, 2017                            | Pre-clinical/prototype                                            |
| US Status                                   | IDE study completed<br>Positive FDA Panel<br>Feb 23, 2017 | IDE trial underway                                                | No IDE yet                                                        | No IDE yet                                                           | No IDE yet                                                        |
| Access                                      | 6 Fr Right Radial                                         | 9Fr TF                                                            | Right Radial                                                      | 12Fr TF sheath                                                       | TF                                                                |
| Debris                                      | Captures and removes                                      | Deflects downstream                                               | Deflects downstream                                               | Captures and removes                                                 | Deflects downstream                                               |
| Placement and Interaction with TAVR devices | Not in aortic arch                                        | Sits in aortic arch.<br>Devices must pass<br>over and back across | Sits in aortic arch.<br>Devices must pass<br>over and back across | Sits in ascending aorta<br>Devices must pass<br>over and back across | Sits in aortic arch.<br>Devices must pass<br>over and back across |

## **SENTINEL Cerebral Protection System (CPS)**




- Two independent filters capture & remove embolic material
- Polyurethane filter, pore size = 140  $\mu$ m
- Standard right trans-radial sheath access (6F)

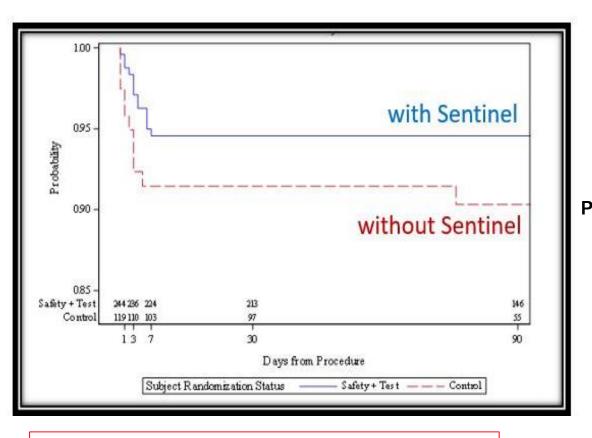


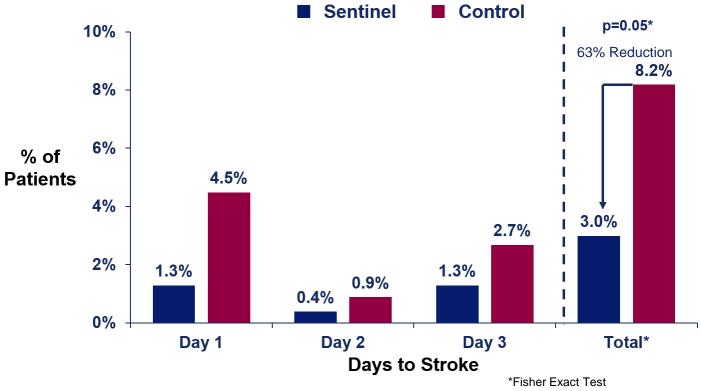
- One size accommodates most vessel sizes; fits ~90% of anatomies
- Deflectable compound-curve catheter facilitates cannulation of LCC
- Minimal profile in aortic arch (little interaction with other devices)



#### **SENTINEL CPS Filters Protection**



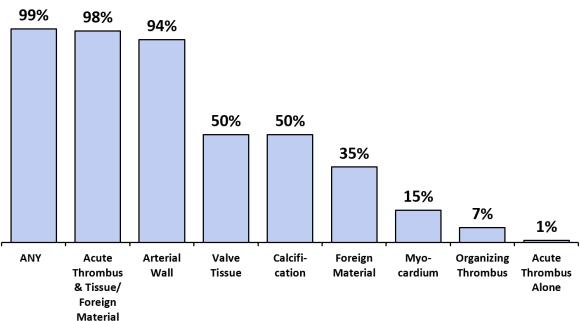

Fully
Protected
74% brain
volume

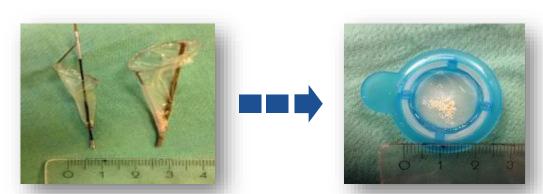

Partially
Protected
24% brain
volume

Unprotected 2% brain volume

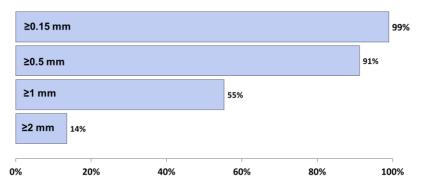
Zhao M, et al. Regional Cerebral Blood Flow Using Quantitative MR Angiography. *AJNR* 2007;28:1470-1473

### SENTINEL Study: "Procedural Stroke"

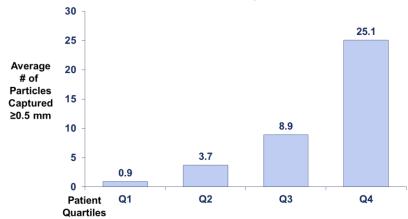


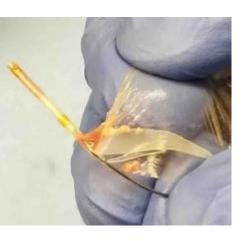

95% of SENTINEL patients were evaluated by neurologists Clinical Events Committee included 2 stroke neurologists

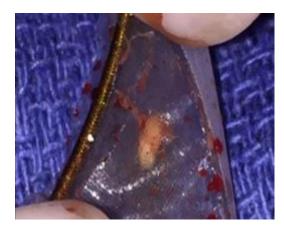

#### Debris Captured in 99% of TAVR Patients in the SENTINEL IDE

#### Patients with Captured Debris (%)

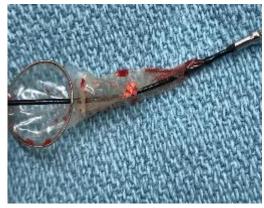


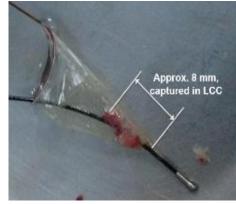




#### Percent of Patients with at Least One Particle of Given Size

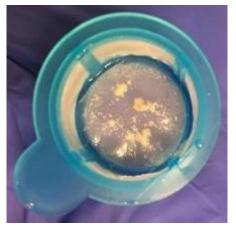


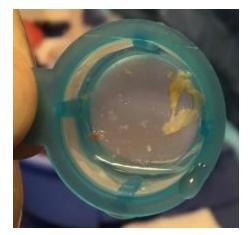

1 in 4 Patients had an average of 25 Particles ≥0.5 mm in Size Captured and Removed





## **Debris Captured and Removed by SENTINEL CPS**











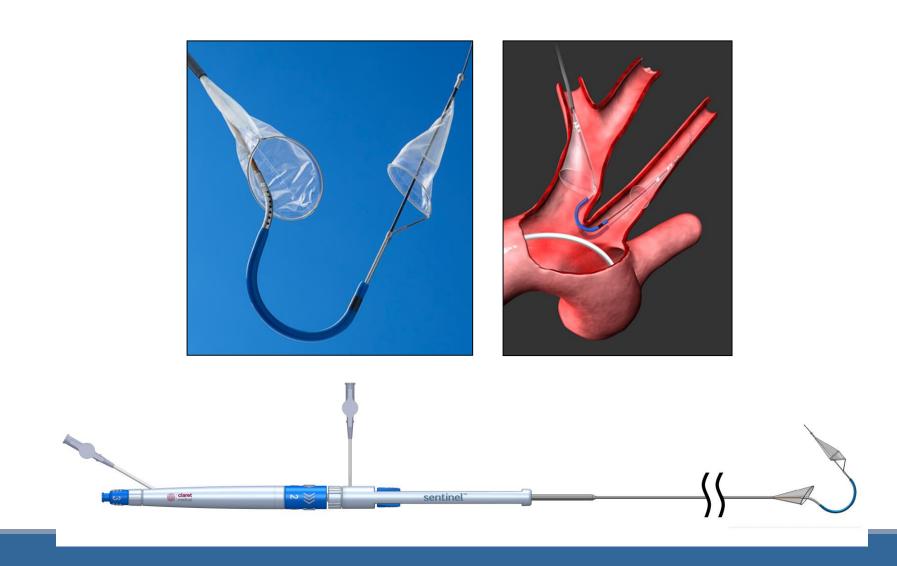









# Real-world Results at Cleveland Clinic Reiterate Low Occurrence of Stroke with Routine Use of SENTINEL CPS


### TAVR by the numbers at Cleveland Clinic in 2018

- Sentinel used in ~470 (95%) of 494 patients who underwent TAVR
- 60% High risk, 40% Intermediate risk
- 90% Conscious Sedation

30-Day Outcomes
0.2% Mortality
0.2% All Stroke
0.8% Aortic Regurgitation (>=2+)
5% New PPM

### Clinical data demonstrates efficacy of cerebral embolic protection.

## Now the question is, who should get it?

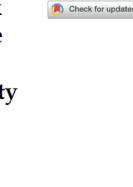


### **Meta-Analysis Identified Predictors of Stroke Post-TAVR:**

Women, Patients with CKD, Patients treated in the second half of a center's experience, and Patients with New-Onset Atrial Fibrillation Post-TAVR

| Predictor                                      | Number of<br>Studies | Number of<br>Participants |          |         | RR (95%CI)       | p-value | I-squared |
|------------------------------------------------|----------------------|---------------------------|----------|---------|------------------|---------|-----------|
| Male Sex                                       | 6                    | 13,342                    |          |         | 0.82 (0.70-0.97) | 0.02    | 0%        |
| Chronic Kidney Disease                         | 5                    | 9,410                     |          | _       | 1.29 (1.03-1.63) | 0.03    | 0%        |
| Enrollment Date:<br>First Half vs. Second Half | 3                    | 5,454                     |          |         | 1.55 (1.16-2.08) | 0.003   | 0%        |
| New-Onset Atrial Fibrillation                  | 4                    | 4,173                     |          |         | 1.85 (1.20-2.84) | 0.005   | 0%        |
|                                                |                      | Decrea                    | sed Risk | Increas | ed Risk          |         |           |
|                                                |                      | 0                         | .5       | 1 2.    | 5                |         |           |

64 studies involving 72,813 patients (2,385 patients with a cardiovascular event within 30 days post-TAVR) were analyzed. Valve type (balloon-expandable vs self-expanding) and approach (TF vs non-TF) did not predict cerebrovascular events.


### Risk Factors for Stroke Identified in the TVT Registry



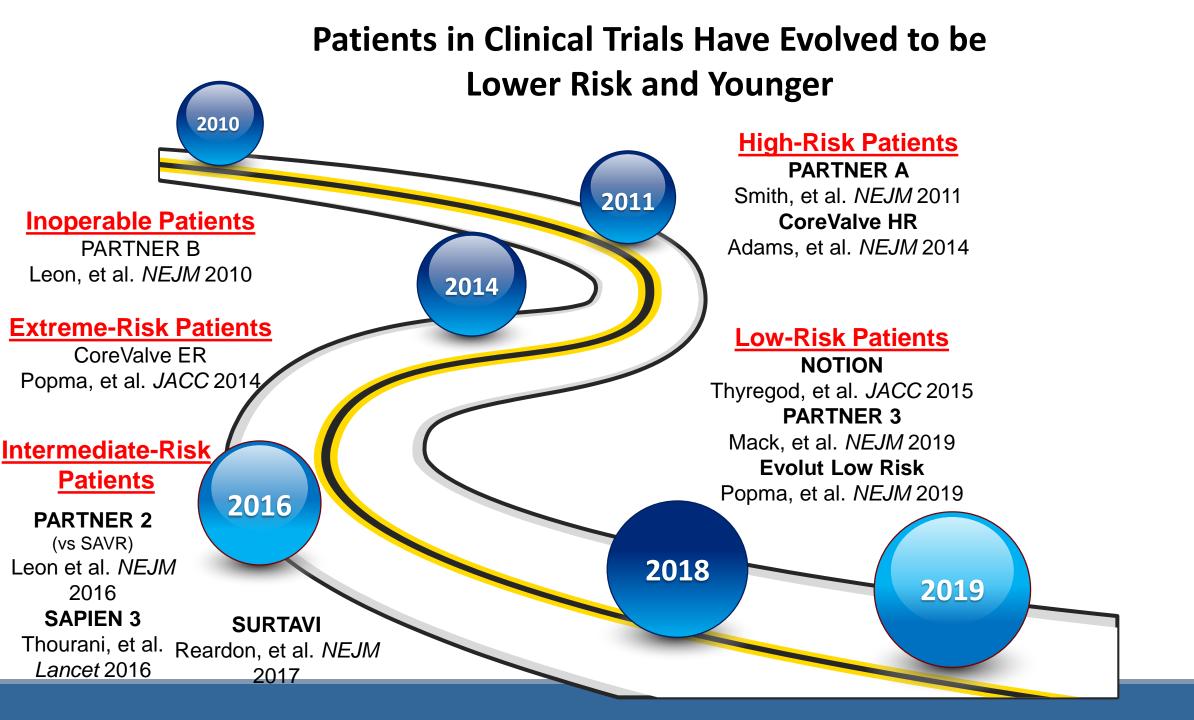
Data from the STS/ACC TVT Registry: 2290 30-day strokes reported among N=101,430 patients who underwent TAVR at 521 US sites from Nov 2011 – June 2017. Data for TF-TAVR

# Older and Sicker Patients May Benefit More From CEP in TAVR Based on In-Hospital Risk-Prediction Model

Development and Application of a Risk Prediction Model for In-Hospital Stroke After Transcatheter Aortic Valve Replacement: A Report From The Society of Thoracic Surgeons/American College of Cardiology Transcatheter Valve Therapy Registry



Vinod H. Thourani, MD, Sean M. O'Brien, PhD, John J. Kelly, MD, David J. Cohen, MD, MSc, Eric D. Peterson, MD, MPH, Michael J. Mack, MD, David M. Shahian, MD, Frederick L. Grover, MD, John D. Carroll, MD, J. Matthew Brennan, MD, MPH, Jessica Forcillo, MD, MSc, Suzanne V. Arnold, MD, Sreekanth Vemulapalli, MD, Susan Fitzgerald, RN, MS, David R. Holmes, MD, Joseph E. Bavaria, MD, and Fred H. Edwards, MD


#### Significant Predictors of Stroke Included:

- Alternative access
- Prior Stroke or TIA
- Procedural acuity
- Smoking
- Porcelain aorta
- Peripheral arterial disease
- Advanced age (>75)

97,600 patients from 521 U.S. sites in the STS/ACC TVT Registry. Median age was 82 years.

#### Limitations

- Neurologic exams were not standardized across sites; a higher site-specific odds ratio for in-hospital stroke may indicate a higher stroke rate or a more thorough neurologic evaluation.
- Patients enrolled in pivotal trials were not included in the TVT Registry which may have introduced selection bias.



# Younger TAVR Patients with Strokes may have More Years to Live with a Disability

#### **Evolut Low Risk**

PARTNER 3

The NEW ENGLAND JOURNAL of MEDICINE

#### ORIGINAL ARTICLE

Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients

Average Age: 74 years

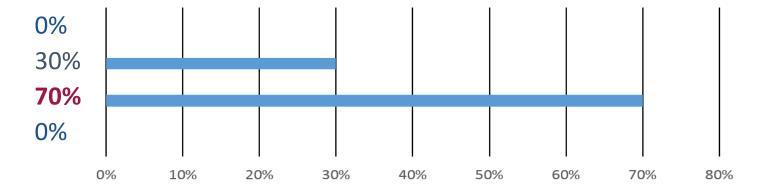
30-Day All-Stroke Rate: 3.4%

The NEW ENGLAND JOURNAL of MEDICINE

#### ORIGINAL ARTICLE

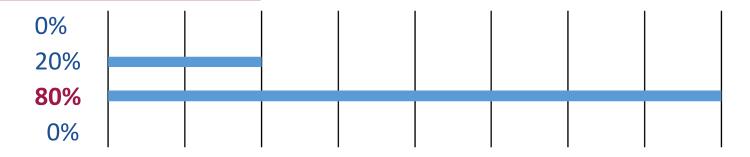
Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients

73 years


0.6%

Stroke rates were low but not 0!

### **Procedural Strokes are a Significant Concern Among Patients**


#### **Audience Response from Cerebral Protection Session at ACC 2017:**

- What is the biggest concern for your patients undergoing TAVR?
  - 1. Having general anesthesia:
- 2. Risk of dying:
- 3. Suffering stroke:
- 4. Other:



- Is cerebral protection necessary during TAVR?
  - 1. No, never:
- 2. Maybe (continue reviewing data):
- 3. Yes, in selected patients:

4. Yes, always:



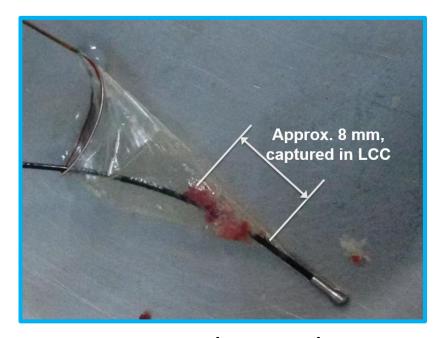
### Who Should have Cerebral Embolic Protection with TAVR?

# Older, sicker patients

More predictors of stroke

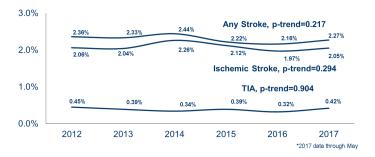
OR

# Younger, healthier patients


Longer to live with a potential disability

### Who Should have Cerebral Embolic Protection with TAVR?

# **Everyone!**




Would you take a chance and drive without a seatbelt?




You never know when You'll need protection!

## **Summary**









- Stroke remains an issue in real-world registries and clinical trials with contemporary devices.
- Stroke has devastating consequences including higher risk of mortality and disability.
- Patients undergoing TAVR fear the risk of stroke over the risk of death.
- Cerebral embolic protection should be used in every eligible (anatomy-permitting) TAVR case.

# Thank you very much for your attention!

