FFR in ACS

Applying clinical data to daily practice

Nils Johnson MD, MS, FACC, FESC

Associate Professor of Medicine Weatherhead Distinguished Chair of Heart Disease Division of Cardiology, Department of Medicine and the Weatherhead PET Imaging Center McGovern Medical School at UTHealth (Houston) Memorial Hermann Hospital – Texas Medical Center United States of America

Health Science Center at Houston

Medical School

Disclosure Statement of Financial Interest

Within the past 12+ months, Nils Johnson has had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

- Grant/research support (to <u>institution</u>)
- Licensing and associated consulting (to <u>institution</u>)
- Support for educational meetings/training (honoraria/fees donated to <u>institution</u>)
- PET software 510(k) from FDA (application by Lance Gould, to <u>institution</u>)
- Patent pending (USPTO serial number 62/597,134)

Organizations (alphabetical)

- St Jude Medical (for CONTRAST study)
- Volcano/Philips (for DEFINE-FLOW study)
- Boston Scientific (for smart-minimum FFR algorithm)
- Various, including academic and industry
- K113754 (cfrQuant, 2011)
- K143664 (HeartSee, 2014)
- K171303 (HeartSee update, 2017)
- SAVI and ΔP/Q methods

70 year-old man with STEMI

- Sudden onset of substernal chest pressure
- Called ambulance, ECG immediately
- Hemodynamically stable, came to cath lab

STEMI culprit plus non-cuprit

Reversal in who receives PCI

Fokkema ML, JACC. 2013 Mar 26;61(12):1222-30. (Figure 2 with annotations)

Stable patients: most FFR data

TABLE 1 Indications for FFR-Based Decision Making								
Vessel	SIHD	NSTE-ACS	STEMI					
Clear culprit	Yes	No	No					
Nonculprit	Yes	Yes	Yes					

ACS culprits: avoid FFR!

TABLE 1 Indications for FFR-Based Decision Making								
Vessel	SIHD	NSTE-ACS	STEMI					
Clear culprit	Yes	No	No					
Nonculprit	Yes	Yes	Yes					

What about FFR of ACS non-culprit?

TABLE 1 Indications for FFR-Based Decision Making							
Vessel	SIHD	NSTE-ACS	STEMI				
Clear culprit	Yes	No	No				
Nonculprit	Yes	Yes	Yes				

ACS non-culprits: FFR stable!

101 patients with ACS STEMI in 75% FFR acute = 0.77 ± 0.13 FFR late = 0.77 ± 0.13 (measured 35 days later) Only 2 changed >0.8 to <0.75

Ntalianis A, JACC Cardiovasc Interv. 2010 Dec;3(12):1274-81. (Figure 1 with annotations)

ACS non-culprits: FFR stable!

Musto C, Am Heart J. 2017 Nov;193:63-69. (Figure 1B and results from Table 2)

ACS non-culprits: FFR and IMR stable!

Lee JM, JACC Cardiovasc Interv. 2018 Apr 23;11(8):717-24. (Figure 2)

FFR and IV adenosine safe in ACS

- FAMOUS-NSTEMI
 - 704 of 706 (99.7%) had successful FFR
 - 2 of 704 (0.3%) had wire-related injury
 - 0 of 350 (0.0%) had adenosine-related MACE
- MR-MI (STEMI culprits for IMR)
 - 0 of 298 (0.0%) had wire-related injury
 - 0 of 298 (0.0%) had adenosine-related MACE
- COMPARE-ACUTE (non-culprit STEMI)
 - 867 of 885 (98.0%) had successful FFR
 - 2 of 885 (0.2%) had wire-related injury
 - "brief episodes of AV conduction delay"
 - "moderate drops in blood pressure"

FAMOUS = Layland J, *Eur Heart J*. 2015 Jan 7;36(2):100-11. (Results from Table 2, results section) MR-MI and FAMOUS = Ahmed N, *Int J Cardiol*. 2016 Jan 1;202:305-10.

COMPARE-ACUTE = Smits PC, NEJM. 2017 Mar 30;376(13):1234-1244. (Results from Table 2, methods)

IC adenosine safe in ACS patients

CP: Treatment (T) vs. Placebo (P)

Model	Study name	Statistics for each study			Events	/ Total		Risk ratio and 95% C		
		Risk	Lower	Upper	p-Value	Treatment	Placebo			
	Fokkema et al. 2009	6.907	0.359	132.947	0.200	3 / 226	0 / 222	1	I	+
	Desmet et al. 2010	0.964	0.296	3.144	0.952	5/56	5/54			1
	Grygier et al. 2011	1.250	0.366	4.270	0.722	6/36	4/35			
Fixed		1.258	0.655	2.862	0.582			1	-	I
								0.04		

Favours T Favours P

Second Degree AV Block: Treatment (T) vs. Placebo (P)

Model Study name		Stat	istics fe	reach	study	Events / Total		Risk ratio and 95% CI	
		Risk	Lower	Upper limit	p-Value	Treatment	Placebo		
	Fokkema et al. 2009	16.293	3.705	63.134	0.000	31/225	2/222		
	Desmet et al. 2010	2.893	0.310	26.959	0.351	3/56	1/54		
Fixed		9.475	2.063	31.369	0.000				

Favours

Bradycardia: Treatment (T) vs. Placebo (P)

Model	Study name		Sta	tistics f	or each	study	Events / Total			Risk ratio and 95% (
			Risk	Lower	Upper limit	p-Value	Treatment	Placebo			
	Fokkema et a	1. 2009	6.709	2.673	16.840	0.000	34 / 225	6 / 222	1		
	Desmet et al.	2010	0.689	0.233	2.038	0.501	5/56	7/54			
Random			2.191	0.235	20.383	0.491			1		

Favours P Ventricular Tachycardia: Treatment (T) vs. Placebo (P)

Model Study name		Sta	tistics f	or each	study	Events	Risk ratio and 95% CI					
		Risk ratio	Lower	Upper limit	p-Value	Treatment	Placebo					
	Fokkema et al. 2009	0.329	0.013	8.031	0.495	0/225	1/222	1-				- 1
	Desmet et al. 2010	0.964	0.062	15.031	0.979	1/56	1/54		+		-	- 1
Fixed		0.611	0.076	4.901	0.642						-	1
								0.01	0.1		10	100

Favours T VF: Treatment (T) vs. Placebo (P)

Favours T Favours P 7 trials in acute MI 1030 subjects Treated after primary PCI IC adenosine vs placebo No difference in: chest pain, bradycardia, VT/VF Higher rates of 20AVB

Singh M, Ther Adv Cardiovasc Dis. 2012 Jun;6(3)101-14. (Figure 7 and results)

Guidelines uncertain for non-culprit

NSTEMI in ESC (2015)

5.6.5.3 Revascularization strategies and outcomes There is a lack of prospective randomized investigations addressing the type (i.e. complete vs. incomplete) and timing (i.e. simultaneous vs. staged) of revascularization in NSTE-ACS. A complete revascularization strategy of significant lesions should be pursued in multivessel disease patients with NSTE-ACS based on two considerations.

European = Roffi M, *EHJ*. 2015;37(3):267-315. American = Amsterdam EA, *JACC*. 2014 Dec 23;64(24):e139-228.

STEMI in ESC (2017) 11. Gaps in the evidence and areas for future research

The best management of non-IRA lesions should be addressed. Unresolved issues are the best criteria to guide PCI (angiography, FFR, or assessment of plaque vulnerability) and the best timing for complete revascularization if indicated (during index PCI or staged, including staged during hospitalization vs. after discharge). NSTEMI in ACC/AHA (2014)

5.1.1. PCI-General Considerations: Recommendation

CLASS IIb

1. A strategy of multivessel PCI, in contrast to culprit lesion—only PCI, may be reasonable in patients undergoing coronary revascularization as part of treatment for NSTE-ACS (330,359–364). (Level of Evidence: B)

STEMI in ACC/AHA (2013)

12.6. Approach to Noninfarct Artery Disease

There is great variability in the evaluation and management of nonculprit coronary artery disease in stable patients without HF or shock, both at the time of primary PCI and later during the hospital course.

European = Ibanez B, *Eur Heart J*. 2018 Jan 7;39(2):119-177. American = O'Gara PT, *JACC*. 2013 Jan 29;61(4):e78-140.

PRIMULTI: FFR in STEMI non-culprit

Complete revascularisation versus treatment of the culprit lesion only in patients with ST-segment elevation myocardial infarction and multivessel disease (DANAMI-3—PRIMULTI): an open-label, randomised controlled trial

- bystander lesion >50% diameter stenosis
- culprit only arm: only primary PCI
- FFR arm: <u>2nd procedure 2 days after index STEMI</u>
- 69% of FFR-guided lesions were ≤0.8

PRIMULTI: FFR in STEMI non-culprit

Engstrøm T, Lancet. 2015 Aug 15;386(9994):665-71. (Figure 2 with annotation from Table 3)

ORIGINAL ARTICLE

Fractional Flow Reserve–Guided Multivessel Angioplasty in Myocardial Infarction

- bystander lesion >50% diameter stenosis
- culprit only arm: only primary PCI
- FFR arm: over <u>80% treated during index STEMI</u>
- 50% of lesions had FFR≤0.8

Smits PC, NEJM. 2017 Mar 30;376(13):1234-1244.

Compare-Acute: FFR in STEMI

Smits PC, NEJM. 2017 Mar 30;376(13):1234-1244. (Figure 2 with annotations and results from Table 3)

Now or later?

In two patients (0.2%), both in the infarctartery-only group, a serious adverse event related to FFR occurred. In one patient, the FFR wire caused a dissection in the non-infarct-related right coronary artery, with subsequent occlusion, infarction, and in-hospital death. In the other patient, after withdrawal of the FFR wire, the noninfarct-related left anterior descending coronary artery became occluded and the patient had STsegment elevation and recurrent chest pain. PCI of the artery was performed successfully.

Does FFR reduce or increase PCI?

Non-culprit revascularization <u>higher</u> with FFR-guided treatment

follow-up) / N = incidence

- Compare-Acute
 - ✓ FFR-guided = (
 - ✓ culprit only = (
- 18) / 295 = **6.1%** 103) / 590 = **17.4%**

- PRIMULTI
 - ✓ FFR-guided = (
 - \checkmark culprit only = (
- 17) / 314 = 5.4% 52) / 313 = 16.6%

Non-culprit revascularization appears lower when FFR-guided

= (

FFR increases PCI vs culprit only!

Non-culprit revascularization <u>higher</u> with FFR-guided treatment

= (index + follow-up) / N = incidence

• Compare-Acute

✓ FFR-guided = (163+ 18) / 295 = 61.4%

- ✓ culprit only = (1+103) / 590 = 17.6%
- PRIMULTI

✓ FFR-guided = (217+ 17) / 314 = 74.5%

 \checkmark culprit only = (2+ 52) / 313 = 17.3%

But only when discounting index revascularization!

Compare-Acute = Smits PC, *NEJM*. 2017 Mar 30;376(13):1234-1244. (Results and Tables 2+3) PRIMULTI = Engstrøm T, *Lancet*. 2015 Aug 15;386(9994):665-71. (Results and Table 3)

FULL REVASC: FFR in STEMI

FULL C? REVASC

Recruitment update 23-April-2018

10-						
Active sites	Principal Investigator	No. of subjects randomized until 2018-04-23	Change since last week			
DK01 Copenhagen	Thomas Engstrøm (NC)	81	3			
DK02 Aalborg	Leif Thuesen	12	1			
DK04 Aarhus	Evald Høj Christiansen	18	0			
FI01 Helsinki	Mika Laine (NC)	8	0			
FI02 Tampere	Olli Kajander	17	0			
LV01 Riga	Andrejs Erglis (NC)	1	0			
RS01 Belgrade Cc Serbia	Goran Stankovic (NC)	15	2			
RS02 Belgrade Cc Zemun	Aleksandar Neskovic	1	1			
RS03 Sremska Kamenica	Ilija Srdanović	34	11			
SE01 Stockholm KS Solna	Andreas Rück (NC)	54	0			
SE02 Uppsala	Stefan James	33	2			
SE03 Stockholm KS Huddinge	Brynjölfur Mogensen	17	0			
SE04 Stockholm Danderyd	Rickard Linder	22	0			
SE05 Stockholm Capio S:t Göran	Pontus Lindroos	6	0			
SE06 Stockholm Södersjukhuset	Nils Witt	17	1			
SE07 Örebro	Thomas Kellerth	31	1			
5E08 Eskilstuna	Mehmet Hamid	39	0			
5E09 Umeå	Jonas Andersson	25	0			
SE10 Linköping (Norrköping)	Dario Hauer	46	2			
SE11 Lund	David Erlinge	2	0			
SE13 Jönköping	Jörg Lauermann	34	0			
SE14 Göteborg SU Sahlgrenska	Oskar Angerås	15	0			
SE16 Sundsvall	Bo Lindvall	6	0			
SE17 Östersund	Anders Ulvenstam	7	2			
SE18 Falun	Kristina Hambraeus	6	0			
SE19 Västerås	Martin Lindholm	3	0			
SE20 Gävle	Robert Kastberg	6	0			
Total of 27 active sites		556	26			

Registry RCT

- STEMI or high-risk NSTEMI
- 4052 subjects
- 556 enrolled (14%)
- FFR-guided PCI during index admission
- No shock, LM, or prior CABG
- Endpoint: all-cause death or MI

URL https://clinicaltrials.gov/ct2/show/NCT02862119 and http://www.ucr.uu.se/fullrevasc/, accessed April 27, 2018

American guidelines now favoring FFR

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2017 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER VOL. 69, NO. 5, 2017 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2016.10.034

CLINICAL DOCUMENT

ACC/AATS/AHA/ASE/ASNC/SCAI/ SCCT/STS 2016 Appropriate Use Criteria for Coronary Revascularization in Patients With Acute Coronary Syndromes

TABLE 1.3 STEMI—Revascularization of Nonculprit Artery During the Initial Hospitalization

Indication

Appropriate Use Score (1-9)

A (7)

Successful Treatment of the Culprit Artery by Primary PCI or Fibrinolysis Revascularization of 1 or More Nonculprit Arteries During the Same Hospitalization

Revascularization by PCI or CABG

14. • Asymptomatic

- One or more additional intermediate (50%-70%) stenoses
- FFR performed and ≤ 0.80

A = appropriate for PCI/CABG

STEMI culprit plus non-cuprit

1st = PCI of culprit (no FFR needed)

2nd = FFR-guided PCI of non-culprit

When can we use FFR?

TABLE 1 Indications for FFR-Based Decision Making								
Vessel	SIHD	NSTE-ACS	STEMI					
Clear culprit	Yes	No	No					
Nonculprit	Yes	Yes	Yes					